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Abstract

In this paper a general set of equations of motion and duality conditions to be imposed at macroscopic
surfaces of discontinuity in partially saturated, solid-second gradient porous media are derived by means of
the Least Action Principle. The need of using a second gradient (of solid displacement) theory is shown
to be necessary to include in the model effects related to gradients of porosity. The proposed governing
equations include, in addition to balance of linear momentum for a second gradient porous continuum and
to balance of water and air chemical potentials, the equations describing the evolution of solid and fluid
volume fractions as supplementary independent kinematical fields. The presented equations are general in
the sense that they are all written in terms of a macroscopic potential Ψ which depends on the introduced
kinematical fields and on their space and time derivatives. These equations are suitable to describe the
motion of a partially saturated, second gradient porous medium in the elastic and hyper-elastic regime. In
the second part of the paper an additive decomposition for the potential Ψ is proposed which allows for
describing some particular constitutive behaviours of the considered medium. While the potential associated
to the solid matrix deformation is chosen in the form proposed by Cowin and Nunziato in [15], [33] and the
potentials associated to water and air compressibility are chosen to assume a simple quadratic form, the
macroscopic potentials associated to capillarity phenomena between water and air have to be derived with
some additional considerations. In particular, two simple examples of microscopic distributions of water and
air are considered: that of spherical bubbles and that of coalesced tubes of bubbles. Both these cases are
suitable to describe capillarity phenomena in porous media which are close to the saturation state. Finally,
an example of a simple microscopic distribution of water and air giving rise to a macroscopic capillary
potential depending on the second gradient of fluid displacement is presented, showing the need of a further
generalization of the proposed theoretical framework accounting for fluid second gradient effects.
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1. Introduction

It is now well recognized that the question of multiphase coupling is crucial for many application fields in
geomechanics, petroleum engineering, and generally for geo-environmental problems. However, any complete
mathematical model is yet available, taking into account the general interactions between a solid phase, a
liquid phase and a third gaseous phase. A considerable effort has been made in this sense by e.g. [23, 24, 25]
in which macroscopic balance equations for multi-phase systems are derived starting from suitable average
procedures in the framework of continuum irreversible thermodynamics. In the quoted papers, the presence
of contact surfaces between different phases is taken into account at the microscopic level, so that the
averaged macroscopic model allows for some discontinuities and singularities of basic kinematical fields.
The main difficulty arising when setting up macroscopic models for non-saturated media seems to be related
to the fact that, while it is possible in a straightforward manner to introduce the volume of each phase, the
surfaces of separation between phases (the interfaces) are not properly taken into account. Indeed, surface
tension stresses are present in these interfaces and they can play a basic role in the macroscopic behaviour of
the whole body (see e. g. [1, 24, 25]). For example, the capillary pressure can induce very strong apparent
cohesion in an unsaturated soil as observed in the laboratory tests or in situ (see e.g. [26]), or in discrete
element numerical simulations of unsaturated granular media (see e.g. [40, 41]). One of the main purposes
of the present paper is to propose a first step for building a general macroscopic framework for three-phase,
solid-second gradient media. However, we limit ourselves to a description in which, at macroscopic level,
no concentration of physical quantities on surfaces, lines and points is allowed. This issue could be relevant
when fluid material surfaces propagate from saturated regions into unsaturated ones (as e.g. in the case of
phreatic level rise): to treat this case the results presented here must be generalized in the spirit of [23].

Also relevant in this context is the effort by [11] who uses a mechanical theory with strong discontinuities
at a micro level to introduce an effective stress tensor at macro scale for partially saturated porous continua.
Indeed, several authors (see e.g. [11] [22], [27], [32]) tried to rigorously generalize Terzaghi’s concept of
effective stress to the case of partially saturated media, but several questions still remain open in this sense.
For example, as shown by [12] by means of suitable homogenisation procedures, the case of quasi-saturated
media is the only case in which the Bishop formula (see [10]) for effective stress can be considered to be
applicable and suitable generalizations in this sense are an open field of research.

In this paper, we only deal with balance equations involving the total stress of the mixture (see Eq.
(13)1) and we do not try here to introduce new arguments to enlighten the concept of effective stress for
partially saturated media, referring to the quoted papers for this purpose.

We decide to follow a macroscopic variational approach in the spirit of [2] who limited themselves to
the saturated case. Other examples of macroscopic variational principles for multi-phase continua can be
found e.g. in [20, 18, 19, 39]. The study of saturated porous media considered as macroscopic systems was
originated by Biot (see e.g. [3, 4, 5, 6, 7, 8, 9]) who introduced the governing equations for such systems
either by means of balance reasoning or presenting their variational formulation. While some models have
been proposed in the past mainly based on thermodynamics arguments ([24, 25, 13, 38]), we derive here,
for the non-saturated case, the bulk equations of motion (13) and the duality conditions (14) to be assigned
on macroscopic surfaces of discontinuity by means of a Least Action Principle. These equations are general
in the sense that they are written in terms of a generic potential Ψ depending on the introduced basic
kinematical parameters. Some particular constitutive assumptions on the potential Ψ are then made in the
second part of the paper which allow for the description of isotropic, partially saturated, second gradient
media. In particular, we propose some particular constitutive expressions for macroscopic capillary potentials
accounting for capillarity effects between water and air at the microscopic level. We do not consider here
capillarity phenomena due to interactions between the solid and the aqueous or the gaseous phases. In
other words, we particularize the obtained general equations to the case of quasi-saturated media, in which
only the water-air capillarity plays an important role. We postpone to further studies the conception of
constitutive expressions for macroscopic potentials allowing for the description of microscopic solid-water
and solid-air capillarity effects which are known to be important when the gaseous phase is preponderant
with respect to the aqueous one (pendular regime).

The present paper is organized as follows. First the kinematics relations and mass balance equations are
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recalled for a three-phase porous medium in a general Lagrangian formalism, including the jump equations
at the interfaces. Then, by imposing that the first variation of the Action functional is vanishing, the
general governing equations and associated duality conditions for unsaturated porous media are obtained.
Some explicit constitutive assumptions particularize the model to make it applicable to cases of interest.
From here, the body is assumed to be close to the saturation state and thus, the gas is present in the
medium under the form of bubbles (spherical bubbles and tubes of coalesced bubbles), allowing to obtain
two different expressions for the macroscopic capillary potential. Hence, a macroscopic solid potential for
isotropic, second gradient solids with voids (of the type used by Cowin and Nunziato in [15]) accounting for
the deformation of the solid phase is proposed, together with a solid and a fluid potential accounting for the
compressibility of the aqueous and the gaseous phase. The solid potential proposed here also account for
second gradient (of solid displacement) terms which are directly related to gradients of porosity. The general
governing equations and associated duality conditions derived in this paper are then explicitly particularized
to the considered constitutive choices. It is well known that second gradient theories, as well as more general
theories as micropolar or micromorphic ones, may be of help when one wants to describe some specific effects
of microstructure on the macroscopic mecahnical behavior of considered system (see e.g. [42, 34, 43]). These
generalized macroscopic theories usually introduce characteristic lengths which are related to the underlying
microstructure and which can also be found by homogenisation of systems which are heterogeneous at the
microscopic scale (see e.g. [16, 17]).

Finally, in section 8, a simple illustrating example is treated which allows for the description of a particular
non-homogeneous microscopic distribution of air inside the REV, namely the case of truncated cones of
coalesced bubbles. This example is able to enlighten the fact that, when distributions of water and air
which are heterogeneous at the microscopic level are considered, then even the general theory presented
here should be enriched to account for macroscopic gradients of fluid density. This means, in other words,
that a second gradient (of fluid displacement) theory should be envisaged also for the fluid constituent in
order to be able to treat such examples of microscopically heterogeneous distributions of the fluid phases.

2. Kinematics and balances of mass for quasi-saturated porous media

2.1. Kinematics of a partially saturated porous medium

In this section, we establish the kinematical fields that need to be introduced to describe the deformation
of a solid porous matrix, on the one hand, and the flow of two fluids (e.g. water and air) through its
interconnected pores, on the other hand. To this purpose, let Bs, Bw and Ba be three open subsets of
R3 (usually referred to as the Lagrangian configurations of the three constituents) and let (0, T ) be a time
interval. It is then possible to introduce the maps

χs : Bs × (0, T ) → R
3, χw : Bw × (0, T ) → R

3, χa : Ba × (0, T ) → R
3

which represent the placement of the solid constituent, of water and air respectively. Moreover, let φw :
Bs × (0, T ) → Bw and φa : Bs × (0, T ) → Ba be the maps which locate, for any instant t ∈ (0, T ),
the fluid material particles Xw and Xa which are in contact with the solid material particle Xs. The
introduced maps are related by φw = χ−1

w ◦ χs, φa = χ−1
a ◦ χs. We also assume that χs, φw and φa are

piecewise C1 diffeomorphisms, i.e. they are continuous in Bs, while their space gradients ∇χs, ∇φw and
∇φa are continuous a.e. in Bs except on a surface Ss which is assumed to be fixed in the solid-Lagrangian
configuration. This means that the fields ∇χs, ∇φw and ∇φa suffer a jump at the surface Ss. Moreover,
we assume that χs(Bs, t) = χw(Bw, t) = χa(Ba, t) and we denote Be(t) this time-varying sub-domain of
R3 usually referred to as Eulerian configuration of the partially saturated porous system. We consider the
three fields χs, φw and φa to be the three independent placement fields needed to uniquely determine
the placement of a macroscopic partially saturated porous system in the 3D Euclidean space (see Fig.1).
Indeed, it is worth noticing that the introduced kinematical fields are macroscopic fields which do not
account for the microscopic distribution of water and air inside the REV. These microscopic informations
are instead contained in the constitutive choice of the macroscopic capillary potentials as it will be shown
in the following.
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Figure 1: Kinematics of a partially saturated porous medium. The independent fields we choose to determine the motion of
the considered system are the three placements χs, φw and φa and the volume fractions of the two fluids ϕw and ϕa.

Notation 1. Given four fields e(x, t), s(Xs, t), w(Xw , t) and a(Xa, t) defined on Be, Bs, Bw and Ba

respectively, we denote the corresponding transported fields as e©s := e ◦ χs, e©w := e ◦ χw, e©a := e ◦ χa,
s©w := s ◦ φ−1

w , s©a := s ◦ φ−1
a , s©e := s ◦ χ−1

s , w©e := w ◦ χ−1
w , w©s := w ◦ φw, w©a := w ◦ (χ−1

w ◦ χa),
a©e := a ◦ χ−1

a , a©s := a ◦ φa and a©w := a ◦ (χ−1
a ◦ χw).

In the following we set

Fs := ∇χs, Gw := ∇φw, Ga := ∇φa, Js := detFs, Iw := detGw, Ia := detGa.

To complete the kinematical description of the considered partially saturated medium, we also introduce,
on the solid-Lagrangian configuration Bs, two additional kinematical parameters accounting for the time
evolution of the volume fractions of the two fluids (see Fig.1)

ϕa : Bs × (0, T ) → R, ϕw : Bs × (0, T ) → R

The solid volume fraction ϕs can be obtained from the volume fractions of the two fluids simply considering
that ϕa+ϕw+ϕs = Js. The Eulerian volume fractions nw, na and ns (defined on Be(t)) can be deduced from
the Lagrangian ones by means of the simple formulas nw = (ϕwJ−1

s )©e, na = (ϕaJ−1
s )©e and ns = (ϕsJ−1

s )©e,
so that it is easy to check that nw + na + ns = 1.

The fact of considering the volume fractions of water and air as independent kinematical parameters
allows for an accurate description of the evolution of porosity and of the degree of saturation inside the
considered porous medium. Indeed, what is currently done in continuum poromechanics (see e.g. [13],
[14], [20], [39]) is to assume that only the solid and fluid placements are independent kinematical fields,
while porosity is usually indirectly calculated by means of so-called “saturation hypotesis” according to
which porosity is obtained as the ratio between the “apparent” density of the fluid (which is indeed one of
the unknowns of classical poromechanical models) and the “true” or “intrinsic” density (which is usually
arbitrarily assigned and is not an unknown field of the problem). If this hypothesis is sensible in the case
of saturated media, it constitutes a too strict constraint for partially saturated ones. Adding the water and
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air volume fractions as additional kinematical parameters allows for obtaining two supplementary evolution
equations for ϕw and ϕa which are suitable to determine the fluid and gaseous volume fractions during the
motion of the system. Since the classical equations giving the evolutions of water and air apparent densities
are also available, the evolution of the true densities of each constituent can be indirectly obtained as the
the ratio of apparent density and of volume fraction of considered constituent. To the authors’ knowledge,
models accounting for the different constituents volume fractions as independent kinematical parameters are
available for solids with voids (see e.g. [15]), but not for porous solids totally or partially saturated with
fluids.

We suppose that the introduced maps χs, φw and φa are Piecewise C1 diffeomorphisms, i.e. they
are continuous everywhere in Bs, while their space gradients ∇χs, ∇φw and ∇φa are continuous and
differentiable almost everywhere in Bs except on a surface of discontinuity Ss. In other words, we can say
that the gradients of the three considered fields suffer a jump on the surface Ss. With these regularity
assumptions it is possible to prove (see [20] for extended calculations) that the following identities hold in
the bulk

div
(

JsF
−T
s

)

= 0, div
(

IwG
−T
w

)

= 0, div
(

IaG
−T
a

)

= 0, (1)

together with their surface counterpart on the surface Ss

[
∣

∣JsF
−T
s ·Ns

∣

∣

]

= 0,
[
∣

∣IwG
−T
w ·Ns

∣

∣

]

= 0,
[
∣

∣IaG
−T
a ·Ns

∣

∣

]

= 0, (2)

where Ns is the unit normal vector to the surface Ss and where we denote, for any tensor field a defined on
the surface Ss, by [|a|] the jump of the field a defined as [|a|] = a+ − a−.

We also remark that, using the chain rule, the following kinematical identities hold true (see also [20] for
detailed calculations)

v©s
w = vs − Fs ·G−1

w · φ̇w, v©s
a = vs − Fs ·G−1

a · φ̇a. (3)

∂

∂t
v©s
w = γ©s

w +∇v©s
w ·G−1

w · φ̇w,
∂

∂t
v©s
a = γ©s

a +∇v©s
a ·G−1

a · φ̇a, (4)

with γw := ∂vw/∂t, γa := ∂va/∂t and where from now on a superposed dot indicates partial differentiation
with respect to time. Finally, owing to the regularity of the considered fields, it can also be proven that (see
[20] for details)

∂

∂t

(

Fs ·G−1
i

)

= ∇
(

Fs ·G−1
i

)

·G−1
i · φ̇i +∇v

©s
i ·G−1

i , i = w, a. (5)

2.2. Balances of mass

Let ηs, ηw and ηa be the constant Lagrangian densities defined on Bs, Bw and Ba respectively and let
mw := Iwηw and ma := Iaηa be the solid-Lagrangian apparent densities of the two fluids. The balances
of mass of the three constituents (solid, water and air) in the solid-Lagrangian reference frame respectively
read (see [20])

∂ηs
∂t

= 0,
∂mw

∂t
+ div (Dw) = 0,

∂ma

∂t
+ div (Da) = 0, (6)

where we set Dw := mw F−1
s ·

(

v©s
w − vs

)

and Da := ma F
−1
s ·

(

v©s
a − vs

)

. It is worth noticing that assuming
(with no loss of generality) that the solid Lagrangian apparent density of the solid ηs is constant implies
that the solid balance of mass (first of Eqs. (6)) is automatically satisfied. As for the fluid balances of mass
at the solid Lagrangian discontinuity surface Ss they read

[|Dw ·Ns|] = 0, [|Da ·Ns|] = 0. (7)
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3. Action functional for a class of partially saturated porous media and its first variation

The Lagrangian function L of the considered system is written, as usual, as the difference between the
kinetic energy density Λ and the strain energy density Ψ. In formulas

L = Λ−Ψ

The expression which we consider in this paper for the kinetic energy density of the system is given by

Λ =
1

2
ma (v©s

a )2 +
1

2
mw (v©s

w )2 +
1

2
ηs v

2
s +

1

2
cw ϕ̇2

w +
1

2
ca ϕ̇

2
a + c ϕ̇wϕ̇a, (8)

where the coefficients cw, ca and c have not been introduced before and are assumed to be constant in
the remainder of this paper. While the first three terms appearing in the considered expression for kinetic
energy are related to macroscopic inertia effects, the last three terms may be related to the microstructure
of considered system (see e.g. [2]).

As for the expression of the strain energy density, we assume that it depends on the introduced kine-
matical fields as follows

Ψ = Ψ (ε,∇ε,mw,ma,ϕw,ϕa,∇ϕw,∇ϕa) , (9)

where ε is the standard Green-Lagrange deformation tensor defined as

ε =
FT

s · Fs − I

2
. (10)

We are considering an expression for the volume strain energy density Ψ of the considered medium which
accounts for the dependence on the second gradient of solid displacement∇ε and on gradient of the two fluids
volume fractions. As it will be better pointed out in the remainder of this paper, the fact of considering a
dependence of Ψ on the second gradient of solid displacement is mandatory when simultaneously considering
a dependence on the gradients of water and fluid volume fractions (or indirectly on the gradient of solid
volume fraction). This fact does not seem to be sufficiently clarified in the literature, for example in [15], even
if a dependence on the gradient of solid volume fraction is considered, the consequent necessary dependence
on the second gradient of displacement is not underlined. This has not consequences for the case considered
there, since it is restricted to the linear elastic case in which the second gradient effects related to the
gradient of solid volume fraction are negligible.

The action functional which we introduce to describe the motion of considered system is then naturally
introduced as

A =

∫

Bs

L dBs =

∫

Bs

(Λ−Ψ) dBs,

where Bs := Bs × [0, T ]. The variation of the action functional can be computed as

δA =

∫

Bs

δL dBs =

∫

Bs

(δΛ− δΨ) dBs. (11)

This choice of the action functional leads to models which generalize those presented by Coussy in [14]
since we are considering that the introduced functional depends on two additional kinematical parameters
(and on their space and time derivatives) representing the water and air volume fractions. Moreover, the
results presented here are more general because they account for the dependence of the strain energy Ψ on
the second gradient of solid displacement. However, as it will be seen in the following section 8, it is easy
to conceive physical situations in which even the complicated theoretical framework we present here is too
restrictive.
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Starting from Eq. (11) with expressions (8) and (9) for the kinetic and potential energy respectively,
performing a suitable number of integration by parts, using some kinematical identities together with the
balances of masses, it can be shown that (see Appendix A for detailed calculations)

∫

Bs

δA =

∫

Bs

[

div

[

Fs ·
(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))]

−
(

ηsγs +mwγ
©s
w +maγ

©s
a

)

]

· δχs

+

∫

Bs

mwG
−T
w ·

[

∇
(

∂Ψ

∂mw

)

+ γ©s
w ·Fs

]

· δφw +

∫

Bs

maG
−T
a ·

[

∇
(

∂Ψ

∂ma

)

+ γ©s
a · Fs

]

· δφa

−
∫

Bs

[

∂Ψ

∂ϕw
− div

(

∂Ψ

∂∇ϕw

)

+ cwϕ̈w + cϕ̈a

]

δϕw −
∫

Bs

[

∂Ψ

∂ϕa
− div

(

∂Ψ

∂∇ϕa

)

+ caϕ̈a + cϕ̈w

]

δϕa

−
∫

Ss

[
∣

∣

∣

∣

{(

Fs ·
(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))

− v©s
w ⊗Dw − v©s

a ⊗Da

)

·Ns − divS
(

Fs ·
∂Ψ

∂∇ε
·Ns

)}

· δχs

∣

∣

∣

∣

]

−
∫

Ss

[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

·Ns

}

· (δχs)n

∣

∣

∣

∣

]

(12)

+

∫

Ss

[
∣

∣

∣

∣

mwG
−T
w ·

(

−
∂Ψ

∂mw
Ns +

1

2

(

v©s
w

)2
Ns −

1

mw
FT

s · v©s
w ⊗Dw ·Ns

)

· δφw

∣

∣

∣

∣

]

+

∫

Ss

[
∣

∣

∣

∣

maG
−T
a ·

(

−
∂Ψ

∂ma
Ns +

1

2

(

v©s
a

)2
Ns −

1

ma
FT

s · v©s
a ⊗Da ·Ns

)

· δφa

∣

∣

∣

∣

]

−
∫

Ss

[
∣

∣

∣

∣

∂Ψ

∂∇ϕw
·Ns δϕw

∣

∣

∣

∣

]

−
∫

Ss

[
∣

∣

∣

∣

∂Ψ

∂∇ϕa
·Ns δϕa

∣

∣

∣

∣

]

−
N
∑

i=1

∫

Ei

[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

· νi

}

· δχs

∣

∣

∣

∣

]

,

where we recall that divS stands for the divergence operator on the surface Ss, (δχs)n stands for the normal
derivative of the field δχs, Ei, i = 1, 2, . . .N are the edges of the surface Ss (if any) and, if the edge Ei is
regarded as the border of a surface, then νi is the normal vector to the considered edge which is tangent to
the surface itself. Moreover, we also recall that, with a slight abuse of notations, we denoted with the same
symbol the jump across a surface and the jump across an edge.

4. Macroscopic equations of motion and associated jump conditions

4.1. General framework

Starting from expression (12) for the variation of the action functional, imposing δA to be vanishing and
considering arbitrary (in the bulk) test functions δχs, δφw, δφa, δϕw and δϕa, we get the following strong
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form of the equations of motion for a partially saturated porous medium

div

[

Fs ·
(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))]

= ηsγs +mwγ
©s
w +maγ

©s
a

∇
(

∂Ψ

∂mw

)

+ FT
s · γ©s

w = 0, ∇
(

∂Ψ

∂ma

)

+ FT
s · γ©s

a = 0, (13)

∂Ψ

∂ϕw
− div

(

∂Ψ

∂∇ϕw

)

= −cwϕ̈w − c ϕ̈a,
∂Ψ

∂ϕa
− div

(

∂Ψ

∂∇ϕa

)

= −caϕ̈a − c ϕ̈w.

We explicitly remark that we obtain the same number of equations as the number of independent kine-
matical fields we have introduced at the beginning of the paper. This means that each of these equations
represent the balance of the internal actions expending power on the virtual variation of each independent
kinematical field. In particular, the first equation is the balance of internal forces (or of linear momentum)
expending power on the virtual solid displacement. The second and third equations represent the balance of
water and air chemical potential respectively, expending power on the relative displacement of each of the
two fluids with respect to the solid phase. The last two equations represent the balance of those internal
actions expending power on the water and air volume fractions virtual variations respectively. These last
equations are what Cowin and Nunziato ([15], [33]) call the balance of equilibrated forces. We can addition-
ally say that these equations may be interpreted as the balance of those internal actions which act on the
change of water and air volume inside the pores, i.e. indirectly on the change of porosity.

Recalling the continuity of the quantities mwG
−T
w and maG

−T
a through the discontinuity surface (Eqs.

(2)), we also get the following duality conditions valid on Ss
[
∣

∣

∣

∣

{(

Fs ·
(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))

− v©s
w ⊗Dw − v©s

a ⊗Da

)

·Ns − divS
(

Fs ·
∂Ψ

∂∇ε
·Ns

)}

· δχs

∣

∣

∣

∣

]

= 0,

[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

·Ns

}

· (δχs)n

∣

∣

∣

∣

]

= 0

[
∣

∣

∣

∣

(

−
∂Ψ

∂mw
Ns +

1

2

(

v©s
w

)2
Ns − FT

s · v©s
w ⊗

Dw

mw
·Ns

)

· δφw

∣

∣

∣

∣

]

= 0,

(14)
[
∣

∣

∣

∣

(

−
∂Ψ

∂ma
Ns +

1

2

(

v©s
a

)2
Ns − FT

s · v©s
a ⊗

Da

ma
·Ns

)

· δφa

∣

∣

∣

∣

]

= 0,

[
∣

∣

∣

∣

∂Ψ

∂∇ϕw
·Ns δϕw

∣

∣

∣

∣

]

= 0,

[
∣

∣

∣

∣

∂Ψ

∂∇ϕa
·Ns δϕa

∣

∣

∣

∣

]

= 0.

and the following duality conditions valid on the edges (if any) of considered surface:
[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

· νi

}

· δχs

∣

∣

∣

∣

]

= 0.

Imposing that the first variation of the action functional (power of internal forces) is vanishing, we are
implicitly assuming (via the principle of virtual powers) that the power of external forces is vanishing as
well. In other words, we are considering that no external (body or surface forces) act on the considered
system, but the generalization of the obtained equations including such external actions is straightforward
and can be found e.g. in [20].
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5. Constitutive assumptions for microscopically homogeneous, partially saturated porous me-

dia

In this section we introduce some constitutive assumptions for the solid and fluid macroscopic energy
potentials. We assume that the global strain energy potential can be decomposed as

Ψ (ε,∇ε,mw,ma,ϕw,ϕa,∇ϕw ,∇ϕa) =Ψs (ε,ϕs,∇ϕs) + Ψw (mw,ϕw ) +Ψa (ma,ϕa ) (15)

+Ψcapill (mw, ϕw, ma, ϕa ) ,

where ϕs := Js − ϕw − ϕa. It could seem that, in the considered constitutive expression, Ψ does not
explicitly depend on the gradient of deformation ∇ε. Indeed, the dependence of Ψ on the gradient of
deformation is introduced by means of the dependence of Ψs on ∇ϕs. In fact, since ϕs = Js − ϕw − ϕa,
then ∇ϕs = ∇Js − ∇ϕw − ∇ϕa (remark that ∇Js is related to ∇ε). It seems then unavoidable that if
one considers constitutive laws for the strain potential depending on ∇ϕs then a second gradient (for the
solid displacement) theory is needed in order to have a coherent set of governing equations. Constitutive
assumptions for the solid potential Ψs analogous to those presented here are made in [15], [33], where
the authors derive the governing equations of an elastic solid with voids on the basis of thermodynamics
arguments. Nevertheless, even if the results we obtain are in agreement with theirs for what concerns first
gradient terms, the authors do not underline the need of adding a second gradient stress tensor to generalize
the Piola-Kirchhoff stress tensor appearing in the balance of linear momentum. If this is sensible in the
case of small deformations (since, as it will be shown in Eqs. (25), the additional second gradient terms
appearing in the balance of linear momentum are all quadratic in the gradient of displacement), this is not
the case when considering finite strains.

Using the constitutive assumption (15), we now calculate all the partial derivatives appearing in equations
(13) and (14), in order to get a simplified form for them. In order to calculate these partial derivatives,
it has to be taken in mind that the independent variables of the considered problem have been chosen to
be mw, ma, ϕw, ϕa, ε,∇ε, while an additional dependent variable, ϕs (and its gradient) appears in the
constitutive assumption (15). This additional variable and its space gradient are respectively related to the
basic variables by the relationships (see also Appendix B)

ϕs =
√

det(C)− ϕw − ϕa, (ϕs),k =
1

2
C−T

ij Cij,k,

were we set C := FT
s ·Fs and where we denoted by Cij its components.

Once the set of independent and dependent variables has been made clear and the constitutive choice
(15) has been adopted, we can compute all the partial derivatives appearing in equations (13) and (14) as
follows1

∂Ψ

∂ε
=

∂Ψs

∂ε
+

∂Ψs

∂ϕs

∂ϕs

∂ε
,

∂Ψ

∂∇ε
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ε
,

∂Ψ

∂mw
=

∂Ψw

∂mw
+

∂Ψcapill

∂mw
,

∂Ψ

∂ma
=

∂Ψa

∂ma
+

∂Ψcapill

∂ma

(16)

∂Ψ

∂ϕw
=

∂Ψw

∂ϕw
+

∂Ψcapill

∂ϕw
+

∂Ψs

∂ϕs

∂ϕs

∂ϕw
,

∂Ψ

∂ϕa
=

∂Ψa

∂ϕa
+

∂Ψcapill

∂ϕa
+

∂Ψs

∂ϕs

∂ϕs

∂ϕa

∂Ψ

∂∇ϕw
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ϕw
,

∂Ψ

∂∇ϕa
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ϕa
.

1Here and in the sequel, given any n-th order and k-th order tensors A and B of components ai1,...,in and bj1 ,...,jk
respectively, we denote by ∂A/∂B the n+ k-th order tensor the component of which are given by (∂A/∂B)i1,...,in,j1,...jk

:=

(∂ai1,...,in )/(∂bi1 ,...,ik ).
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We then introduce more particular expressions for the single potentials Ψw, Ψa and Ψcapill which can
be suitable to model physical situations in which water and air are homogeneously distributed inside the
REV (i.e. at the microscopic level). To do so, we consider the following particular forms for the macroscopic
energy densities associated to the two fluids and to capillarity effects

Ψw (mw,ϕw) = ew

(

mw

ϕw

)

ϕw, Ψa (ma,ϕa) = ea

(

ma

ϕa

)

ϕa, (17)

Ψcapill (mw, ma, ϕw,ϕa ) = ecapill

(

mw

ϕw
,
ma

ϕa

)

ϕa. (18)

The functions ew, ea and ecapill can be interpreted as the microscopic energies of water and air and as
the microscopic capillary energy respectively when considering a homogeneous distribution of water and air
inside the REV. More precisely, if the microscopic densities of water and air ρmicro

w and ρmicro
a are both

constant inside each REV, this means that, denoting by 〈·〉 the average of a microscopic quantity in a REV,
we can write ρmicro

w =
〈

ρmicro
w

〉

= ρw/nw = mw/ϕw and ρmicro
a =

〈

ρmicro
a

〉

= ρa/na = ma/ϕa (where
ρw := mwJ−1

s and ρa := maJ−1
s denote the Eulerian apparent densities of water and air respectively). It

is then clear that, with these assumption of homogeneity inside the REV, the microscopic quantities ρmicro
w

and ρmicro
a can be confused with the macroscopic ones mw/ϕw and ma/ϕa. It is in this sense that, in the

considered case of homogeneous distribution of water and air inside each REV, the potentials ew, ea and
ecapill appearing in Eqs. (17) and (18) can be interpreted as microscopic potentials.

With the additional constitutive assumptions (17) and (18), the partial derivatives (16) read

∂Ψ

∂ε
=

∂Ψs

∂ε
+

∂Ψs

∂ϕs

∂ϕs

∂ε
,

∂Ψ

∂∇ε
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ε
,

∂Ψ

∂mw
=

∂ew
∂(mw/ϕw)

+
ϕa

ϕw

∂ecapill
∂(mw/ϕw)

,
∂Ψ

∂ma
=

∂ea
∂(ma/ϕa)

+
∂ecapill

∂(ma/ϕa)

∂Ψ

∂ϕw
= ew −

mw

ϕw

∂ew
∂(mw/ϕw)

−
ϕa

ϕw

mw

ϕw

∂ecapill
∂(mw/ϕw)

+
∂Ψs

∂ϕs

∂ϕs

∂ϕw
,

(19)

∂Ψ

∂ϕa
= ea −

ma

ϕa

∂ea
∂(ma/ϕa)

+ ecapill −
ma

ϕa

∂ecapill
∂(ma/ϕa)

+
∂Ψs

∂ϕs

∂ϕs

∂ϕa

∂Ψ

∂∇ϕw
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ϕw
,

∂Ψ

∂∇ϕa
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ϕa
.

6. Up-scaling for macroscopic capillary potentials

In this subsection we focus on finding some specific macroscopic potentials related to capillarity effects
and which take the general form given in Eq. (18). To do so, we show an up-scaling procedure which allows
us to present two examples of macroscopic capillary energy potentials of the type (18) corresponding to two
different microscopic distributions of the air inside the REVs.

6.1. The case of spherical bubbles

We consider here the case of spherical air bubbles dispersed inside the interstitial water. We assume that
the air mass is distributed among equal bubbles, having same mass and radius. We suppose in this case

11



that the microscopic densities of water and air ρmicro
w and ρmicro

a are both constant inside each REV. This
means that ρmicro

w =
〈

ρmicro
w

〉

= ρw/nw = mw/ϕw and ρmicro
a =

〈

ρmicro
a

〉

= ρa/na = ma/ϕa. With these
assumptions and denoting by uw

(

ρmicro
w

)

and ua

(

ρmicro
a

)

the microscopic pressures of water and air inside
the REV, the Laplace law can be written as

2γ

Ra
= ua

(

ρa
na

)

− uw

(

ρw
nw

)

=⇒ Ra(ρa, na, ρw, nw) =
2γ

ua − uw

where γ is the surface tension of the water-air interface, Ra is the radius of air bubbles. It is known that in
the case of spherical bubbles ua > uw so that ua − uw > 0.

Let Na be the number of air bubbles per unit of Eulerian volume dBe, then the volume of air per unit
of Eulerian volume dBe (air volume fraction na) is

na = Na
4

3
πR3

a =⇒ Na =
3na

4 πR3
a

The surface of air per unit of Eulerian volume is 4πR2
aNa so that the macroscopic Eulerian energy

potential can be written as Wcapill = γ 4πR2
aNa which, replacing the obtained expressions for Na and Ra,

simplifies into

Wcapill =
3

2
na

(

ua

(

ma

ϕa

)

− uw

(

mw

ϕw

))

.

The corresponding solid-Lagrangian potential Ψcapill is easily computed as

Ψcapill(mw,ma,ϕw,ϕa) = JsWcapill =
3

2

(

ua

(

ma

ϕa

)

− uw

(

mw

ϕw

))

ϕa,

which is in the form (18) when setting ecapill = 3/2 (ua − uw).

6.2. The case of tubes of coalesced bubbles

Also in this case we suppose that water and air are homogeneously distributed inside each REV, we can
write ρmicro

w =
〈

ρmicro
w

〉

= ρw/nw and ρmicro
a =

〈

ρmicro
a

〉

= ρa/na. With these assumptions, denoting by
uw

(

ρmicro
w

)

and ua

(

ρmicro
a

)

the microscopic pressures of water and air inside the REV, the Laplace law can
be written as

γ

Ra
= ua

(

ρa
na

)

− uw

(

ρw
nw

)

=⇒ Ra(ρa, na, ρw, nw) =
γ

ua − uw

Ra is the radius of the cylinder of coalesced bubbles in a REV. Let Na be the number of air cylinders per unit
of Eulerian volume dBe, then the volume of air per unit of Eulerian volume (Eulerian air volume fraction
na) is

na = NaπR
2
aL =⇒ Na =

na

πR2
aL

where L is the length of the cylinder. The surface of air per unit of Eulerian volume is 2πRaLNa and the
Eulerian macroscopic capillary energy is then Wcapill = γ 2πRaLNa, which replacing the calculated values
of Na and Ra gives

Wcapill = 2na

(

ua

(

ma

ϕa

)

− uw

(

mw

ϕw

))

.

The corresponding solid Lagrangian capillary potential is easily evaluated as

Ψcapill(mw,ma,ϕw,ϕa) = JsWcapill = 2

(

ua

(

ma

ϕa

)

− uw

(

mw

ϕw

))

ϕa,

which is in the form (18) when setting ecapill = 2(ua − uw).
12



7. Governing equations for isotropic, microscopically homogeneous, partially saturated porous

media

In this section we further particularize the obtained set of equations of motion and naturally associated
boundary conditions to treat the simplified case of elastic and isotropic solid deformation and almost incom-
pressible fluids. These simplified equations are a suitable basis to study e.g. wave propagation in partially
saturated media. To do so, following Cowin and Nunziato [15], we introduce a particular expression for the
potential Ψs of the considered porous matrix which is valid in the linear-isotropic, elastic case:

Ψs(ε,ϕs,∇ϕs) = µε | ε+
λ

2
(tr ε)2 + βϕstr ε+

1

2
ζϕ2

s +
1

2
α∇ϕs | ∇ϕs, (20)

where the elasticity parameters λ, µ, α, β and ζ are all assumed to be constant. Moreover, we choose the
following quadratic expressions for the microscopic energies of water and air respectively

ew

(

mw

ϕw

)

=
1

2
Kw

(

mw

ϕw
−

m0
w

ϕ0
w

)2

+ Cw

(

mw

ϕw
−

m0
w

ϕ0
w

)

,

(21)

ea

(

ma

ϕa

)

=
1

2
Ka

(

ma

ϕa
−

m0
a

ϕ0
a

)2

+ Ca

(

ma

ϕa
−

m0
a

ϕ0
a

)

.

With this choice of the water and air potentials, we are assuming that the water and air densities can only
have small variations during the deformation of the porous system.

As for the capillary potential, we have

ecapill

(

mw

ϕw
,
ma

ϕa

)

= Kcapill

(

ua

(

ma

ϕa

)

− uw

(

mw

ϕw

))

, (22)

where Kcapill = 3/2 for the case of spherical bubbles or Kcapill = 2 for the case of tubes of coalesced bubbles
(see previous section). Moreover, the pressures uw and ua of water and air, can be evaluated from the
microscopic potentials according the common thermodynamics relations between pressure and free energy:

uw = −ew +
mw

ϕw

∂ew
∂(mw/ϕw)

, ua = −ea +
ma

ϕa

∂ea
∂(ma/ϕa)

. (23)

Using the particular expressions (20), (21) and (22) for the introduced energy potentials and recalling
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equations (23), it can be checked that2

∂Ψs

∂ε
= 2µε+ (λtr ε+ βϕs)I,

∂Ψs

∂ϕs

∂ϕs

∂ε
= (βtr ε+ ζϕs)JsC

−T

∂Ψ

∂ϕs

∂ϕs

∂ϕw
=

∂Ψs

∂ϕs

∂ϕs

∂ϕa
= −(βtr ε+ ζϕs)

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ϕw
=

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ϕa
= −α∇ϕs,

∂Ψs

∂∇ϕs
·
∂∇ϕs

∂∇ε
= αJsC

−T ⊗∇ϕs (24)

∂ew
∂(mw/ϕw)

= Kw

(

mw

ϕw
−

m0
w

ϕ0
w

)

+ Cw,
∂ea

∂(ma/ϕa)
= Ka

(

ma

ϕa
−

m0
a

ϕ0
a

)

+ Ca,

∂ecapill
∂(mw/ϕw)

= −Kcapill Kw
mw

ϕw
,

∂ecapill
∂(ma/ϕa)

= Kcapill Ka
ma

ϕa
.

2To get some of these equalities, we used the fact that ∂ϕs/∂ϕa = ∂ϕs/∂ϕw = −1, ∂∇ϕs/∂∇ϕa = ∂∇ϕs/∂∇ϕw = −I,
∂ϕs/∂ε = ∂Js/∂ε, ∂(∇ϕs)/(∂∇ε) = ∂(∇Js)/(∂∇ε), so that it can be checked that (see Appendix B for calculations)

Js =
√

det(2ε + I) =⇒
∂Js
∂ε

= JsC
−T and

∂(Js),k
∂εlm,n

= Js C
−1

lm δkn.
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Using equations (19) and (24) and simplifying3, the equations of motion (13) can be finally rewritten as

div
{

Fs · [ 2µ ε+ (λtr ε+ β ϕs) I ] + [βtr ε+ ζϕs] JsF
−T
s

}

− div
{[

div(α∇ϕs) I+
(α

2
∇ϕs · (C−1 : ∇C)

)

I− Jsα (F−T
s ·∇C ·∇ϕs) ·F−1

]

· JsF−T
s

}

= ηsγs +mwγ
©s
w +maγ

©s
a ,

∇
[

Kw

(

mw

ϕw
−

m0
w

ϕ0
w

)

−
ϕa

ϕw
Kcapill Kw

mw

ϕw

]

+ FT
s · γ©s

w = 0,

∇
[

Ka

(

ma

ϕa
−

m0
a

ϕ0
a

)

+Kcapill Ka
ma

ϕa

]

+ FT
s · γ©s

a = 0,

(25)

− (βtr ε+ ζϕs ) + div (α∇ϕs) + ew −
mw

ϕw

(

Kw

(

mw

ϕw
−

m0
w

ϕ0
w

)

+ Cw

)

+
ϕa

ϕw

(

mw

ϕw

)2

Kcapill Kw = −cwϕ̈w − c ϕ̈a,

− (βtr ε+ ζϕs ) + div (α∇ϕs) + ea + ecapill −
ma

ϕa

(

Ka

(

ma

ϕa
−

m0
a

ϕ0
a

)

+ Ca

)

−
(

ma

ϕa

)2

Kcapill Ka = −caϕ̈a − c ϕ̈w,

where we recall that the constitutive expressions for ew, ea and ecapill are given by the constitutive equa-
tions (22) and (21). We remark that, even if the expression obtained for the first of equations (25) might
seem complicated, this form of the balance equations is suitable to be easily transported on the Eulerian
configuration of the system thanks to the Piola transformation JF−T inside the solid-Lagrangian divergence
operator (we refer to [20] for the definition of the operations needed to transport a balance law from one
configuration to the other).

Analogously, it can be checked that, always using equations (19) and (24), the boundary conditions (14)
are rewritten as

3To get the first of equations (25) we also used the fact that C−1

jk,p
= −C−1

ji Cih,pC
−1

hk
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[
∣

∣

{[

Fs · (2µ ε+ (λtr ε+ β ϕs) I) + (βtr ε+ ζϕs)JsF
−T
s

]

·Ns

}

· δχs

∣

∣

]

−
[
∣

∣

∣

{[

div(α∇ϕs) I+
(α

2
∇ϕs · (C−1 : ∇C)

)

I− Jsα (F−T
s ·∇C ·∇ϕs) · F−1

]

· JsF−T
s ·Ns

}

· δχs

∣

∣

∣

]

−
[
∣

∣

{(

v©s
w ⊗Dw + v©s

a ⊗Da

)

·Ns + divS
(

αJsF
−T
s ⊗∇ϕs ·Ns

)}

· δχs

∣

∣

]

= 0,

[
∣

∣

(

αJsF
−T
s ·Ns ⊗∇ϕs ·Ns

)

· (δχs)n
∣

∣

]

= 0,

−
[
∣

∣

∣

∣

([

Kw

(

mw

∂ϕw
−

m0
w

∂ϕ0
w

)

+ Cw −
ϕa

ϕw
Kcapill Kw

mw

∂ϕw

]

Ns

)

· δφw

∣

∣

∣

∣

]

+

[
∣

∣

∣

∣

(

1

2

(

v©s
w

)2
Ns − FT

s · v©s
w ⊗

Dw

mw
·Ns

)

· δφw

∣

∣

∣

∣

]

= 0,

(26)

−
[
∣

∣

∣

∣

([

Ka

(

ma

∂ϕa
−

m0
a

∂ϕ0
a

)

+ Ca + Kcapill Ka
ma

∂ϕa

]

Ns

)

· δφa

∣

∣

∣

∣

]

+

[
∣

∣

∣

∣

(

1

2

(

v©s
a

)2
Ns − FT

s · v©s
a ⊗

Da

ma
·Ns

)

· δφa

∣

∣

∣

∣

]

= 0,

[|− (α∇ϕs ·Ns) δϕw|] = 0, [|− (α∇ϕs ·Ns) δϕa|] = 0,

[
∣

∣

{(

αJsF
−T
s ⊗∇ϕs ·Ns

)

· νi

}

· δχs

∣

∣

]

= 0.

These duality conditions can be used to impose suitable kinematical or natural boundary conditions at
macroscopic surfaces of discontinuity of the material properties of the considered medium. More particularly,
depending on the physics of the problem in study, one can think to impose forces or displacement, double
forces or normal derivative of displacement, chemical potentials or relative fluid-solid displacement, partial
pore pressures or fluid volume fractions. Moreover, since we are dealing with a solid-second gradient theory
also forces per unit line or displacements can be assigned on the edges (if any) of considered surface (last
of conditions (26)). It can be remarked that the coupled system of PDEs which we obtain in this paper
has a very involved structure. As already remarked, a first study should involve the characterization of
the properties of waves propagating in our complex continuum: this is feasible when considering the results
presented in [21, 37, 36, 29, 30, 35]

8. An example of fluid capillarity leading to fluid second gradient macroscopic interactions

In this section we show a simple example of microscopic water and air distribution inside the pores
which leads to a macroscopic capillary potential which is more general than the ones considered up to now.
More particularly, we will show that, as far as the microscopic density distribution of one of the fluids is not
homogeneous inside the REV, then a second gradient theory must be considered also for the fluid constituent.
This means that some situations may exist for which the solid-second gradient macroscopic theory presented
in this paper is not sufficient and should be generalized by considering a strain potential depending on the
second gradient of fluid placement. We consider here a simple case of microscopic heterogeneous distribution
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of air inside the considered porous medium. In particular, we assume that the air inside each REV consists
of a truncated cone of coalesced bubbles of length comparable with the size of the REV. Since we are
considering a truncated cone, the section of the tube varies inside the REV, so that the microscopic pressure
of air cannot be supposed to be constant in the REV itself. In particular, we assume that the microscopic
density of air ρmicro

a can linearly vary inside each truncated cone as

ρmicro
a (y) =

ρa
na

+∇
(

ρa
na

)

· (y − y0), (27)

where ∇(ρa/na) is the space gradient of the macroscopic true density, y0 is the centroid of the REV (which
also coincides with the center of the axis of the truncated cone) and y is a variable spanning on the axis
of the truncated cone. This ansatz concerning the structure of the microscopic air density field inside any
REV is the simplest possible which can be considered among the density fields such that i) they are spatially
non-constant inside the REV, ii)

〈

ρmicro
a

〉

= ρa/na and iii)
〈

∇ρmicro
a

〉

= ∇ (ρa/na). On the other hand,
we consider that outside the truncated cone of bubbles the microscopic density of water ρmicro

w is constant
in space and equal to ρw/nw. This implies that that the microscopic pressure uw(ρw/nw) is also constant
inside the REV. We remark that expression (27) for the microscopic density of air can be pulled back on
the Lagrangian configuration recalling that (ρa/na)©s = ma/ϕa, that (∇(ρa/na))©s = ∇(ma/ϕa) · F−1

s and
that (y− y0) = Fs · (Y−Y0), where Y0 and Y are the centroid of the REV and a coordinate spanning on
the axis of the tube in Lagrangian coordinates respectively. Indeed, it is then easy to check that equation
(27) implies

ρmicro
a (Y) =

ma

ϕa
+∇

(

ma

ϕa

)

· (Y −Y0) =
ma

ϕa
+∇

(

ma

ϕa

)

· sE, (28)

where s is a curvilinear abscissa which spans on the axis of the truncated cone in the Lagrangian configu-
ration. In other words, if E is a unit vector along the axis of the tube and if L is the size of the Lagrangian
REV, then sE = Y −Y0 for s ∈ [−L/2, L/2] and for Y spanning on the axis of the tube.

The Laplace law for the considered case reads

γ

R(y)
= ua

(

ρmicro
a (y)

)

− uw

(

ρw
nw

)

=⇒ R(y) =
γ

ua(y) − uw
, (29)

where R(y) is the radius of the circular sections of the truncated cone. This equation can be simply pulled
back on the solid-Lagrangian configuration as

γ

R(Y)
= ua

(

ρmicro
a (Y)

)

uw

(

mw

ϕw

)

=⇒ R(Y) =
γ

ua(Y)− uw
, (30)

where ρmicro
a (Y) is given by Eq. (28).

We now assume that the microscopic air pressure takes the constitutive form

ua(Y) = u0
a + c

(

ρmicro
a (Y)− ρ0a

)

.

Considering that the radius of the cross section of the tube is linearly varying with s, i.e. R(s) =
(R1 − R0) s/L + (R1 + R0)/2, where R0 and R1 are the radii of the circular sections of the cone for
s = −L/2 and s = L/2 respectively, then the Laplace Law evaluated in s = −L/2 and s = L/2 respectively
implies

R0 =
γ

u0
a − uw − cρ0a + c (ma/ϕa − L/2 ∇(ma/ϕa) ·E)

,

(31)

R1 =
γ

u0
a − uw − cρ0a + c (ma/ϕa + L/2 ∇(ma/ϕa) ·E)

.

17



We explicitly remark that the two radii of the truncated cone explicitly depend on the macroscopic gradient
of air density.

Let Na be the number of air truncated cones per unit of Eulerian volume dBe, then the air volume
fraction is

na = Na
1

3
πL

(

R2
0 +R2

1 +R0R1

)

,

which implies

Na =
3na

πL (R2
0 +R2

1 +R0R1)

The surface of air per unit of Eulerian volume is given by the surface of the truncated cone

Na π (R0 +R1)
√

L2 + (R1 −R0)2

which multiplied by the surface tension γ finally gives the macroscopic capillary energy potential

Wcapill =
3 γ na (R0 +R1)

L (R2
0 +R2

1 +R0R1)

√

L2 + (R1 −R0)2

or equivalently

Ψcapill (mw, ϕw, ma, ϕa, ∇ma, ∇ϕa ) = JsWcapill =
3 γ ϕa (R0 +R1)

L (R2
0 +R2

1 +R0R1)

√

L2 + (R1 −R0)2,

where R0 and R1 are given by (31).
We have shown in this section a simple example of non-homogeneous distribution of microscopic air

density inside the REV which gives rise to a macroscopic capillary potential depending not only on the
macroscopic density of water, but also on its macroscopic gradient. This means that, even in simple cases
as the one shown in this section, a macroscopic capillary potential of the type used in this paper (see Eq.
(18)) is not sufficient to take into account the effects of a heterogeneous distribution of water and air inside
the REV. Indeed, in the simple case considered in this section a macroscopic capillary potential depending
on the gradient of air density is obtained. This fact suggests that the theory presented in this paper and
which seemed to be complicated due to the presence of a second gradient for the solid constituent is not
general enough to take into account complex capillary interactions. A more general theory accounting for
the presence of second gradient of the fluid placements φw and φa (i.e. of first gradient of the fluid densities)
is needed to treat some kind of problems and can be obtained in the spirit of what done in [39].

9. Conclusions

A methodology has been proposed in this paper for building a mathematical model for solid-second
gradient three-phase media. This methodology based on a Hamilton-type variational principle (Least Action
Principle) is not novel (see e.g. [2, 20, 28, 31, 39]), but its application to unsaturated porous media is
developed here for the first time (at least according to the authors knowledge). The macroscopic equations of
motion have been established as well as the macroscopic jump conditions on the interfaces. By considering an
additive decomposition of the strain energy potential, the three phase potentials and a capillary potential are
exhibited. As for the solid potential we propose a second gradient generalization of the one used by Cowin and
Nunziato in [15] for isotropic elastic porous solids with voids. The water and air potentials are chosen, in the
last part of the paper, to be those of quasi-incompressible fluids, while some different simple cases have been
considered for the choice of the capillary potential. Indeed, it is clear that the main difficulty of modelling
three-phase media in a macroscopic framework is related to the construction of this last potential. We exhibit
two macroscopic capillary potentials which are obtained from two distinct homogeneous distributions of air
inside the pores: spherical bubbles and tubes of coalesced bubbles. Eventually, in a last part, a more

18



complicated situation accounting for a microscopically heterogeneous distribution of air inside the REV
has been treated: truncated cones of coalesced bubbles. It is worth noticing that this last case has led to
macroscopic fluid second gradient effects, due to the microscopic interface coupling between water and air
which are heterogeneously distributed inside the REV.

All the examples illustrated in this paper show the capabilities of the proposed model to describe the
mechanical behaviour of three phase media, even if limited here to porous materials close to saturation
conditions. Forthcoming works should consider the application of the presented theory to the case of wave
propagation in partially saturated media (using the methods proposed in [21, 37, 29, 30, 35]) and the more
general case of unsaturated assemblies of elastic spherical grains (following micro-mechanical arguments of
the type presented in [40, 41]).
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A. Variation of the Action and Rayleigh Functionals

We start noticing that, out of the singularity surface Ss and considering suitably regular fields, the
variations of the introduced auxiliary fields can be written in terms of the variations of the basic independent
kinematical fields as

δε =
1

2
δ
(

FT
s ·Fs − I

)

=
1

2

(

δFT
s ·Fs + FT

s · δFs

)

=
(

FT
s ·∇ (δχs)

)sym
,

δηs = 0, δvs = δχ̇s

δIi = δ (det (∇φi)) = IiG
−T
i | ∇ (δφi) , i = w, a; (32)

δη©si = δ (ηi ◦ φi) = (∇ηi)
©s · δφi = ∇η©si ·G−1

i · δφi, i = w, a

δmi = δ
(

Iiη
©s
i

)

= η©si δIi + Ii δη
©s
i = div

(

η©si Ii G
−1
i · δφi

)

= div
(

miG
−1
i · δφi

)

, i = w, a.

Recalling Eq. (3), the variations of the solid Lagrangian fluid velocities v©s
i , i = w, a are now computed4

δv©s
i = δχ̇s −∇ (δχs) ·G

−1
i · φ̇i + Fs ·G−1

i .∇ (δφi) ·G
−1
i · φ̇i − Fs ·G−1

i · δφ̇i, i = w, a. (33)

Let us now perform the solid-Lagrangian variation δA of the action functional. To do so, we start
computing the variation of the strain energy density which, recalling definition (9) for Ψ, using expressions
(32) for the variations of the involved auxiliary functions and considering that the tensor ∂Ψ/∂ε is a second
order symmetric tensor and that ∂Ψ/∂∇ε is a third order tensor symmetric with respect to its first two
indexes, can be written as

δΨ =
∂Ψ

∂ε
| δε+

∂Ψ

∂∇ε
| δ∇ε+

∂Ψ

∂mw
δmw +

∂Ψ

∂ma
δma

+
∂Ψ

∂ϕw
δϕw +

∂Ψ

∂ϕa
δϕa +

∂Ψ

∂∇ϕw
| δ∇ϕw +

∂Ψ

∂∇ϕa
| δ∇ϕa

(34)

=
∂Ψ

∂ε
|
(

FT
s ·∇ (δχs)

)

+
∂Ψ

∂∇ε
| ∇

(

FT
s · (∇δχs)

)

+
∂Ψ

∂mw
div

(

mwG
−1
w · δφw

)

+
∂Ψ

∂ma
div

(

maG
−1
a · δφa

)

+
∂Ψ

∂ϕw
δϕw +

∂Ψ

∂ϕa
δϕa +

∂Ψ

∂∇ϕw
| ∇δϕw +

∂Ψ

∂∇ϕa
| ∇δϕa.

Considering the integral form of expression (34), assuming that the considered test functions have compact
support K included in Bs with non-vanishing intersection with the discontinuity surface Ss and integrating

4Here, and everywhere else is not differently specified, we indicate with a superposed dot the partial time derivative of a
solid-Lagrangian field.
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by parts in space a suitable number of times we get
∫

Bs

δΨ = −
∫

Bs

div

[

Fs ·
(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))]

· δχs −
∫

Bs

[

mwG
−T
w ·∇

(

∂Ψ

∂mw

)]

· δφw

−
∫

Bs

[

maG
−T
a ·∇

(

∂Ψ

∂ma

)]

· δφa +

∫

Bs

(

∂Ψ

∂ϕw
− div

(

∂Ψ

∂∇ϕw

))

δϕw +

∫

Bs

(

∂Ψ

∂ϕa
− div

(

∂Ψ

∂∇ϕa

))

δϕa

+

∫

Ss

[
∣

∣

∣

∣

{

Fs ·
(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))

·Ns

}

· δχs

∣

∣

∣

∣

]

+

∫

Ss

[
∣

∣

∣

∣

(

Fs ·
∂Ψ

∂∇ε
·Ns

)

| ∇(δχs)

∣

∣

∣

∣

]

(35)

+

∫

Ss

[
∣

∣

∣

∣

mwG
−T
w ·

∂Ψ

∂mw
Ns · δφw

∣

∣

∣

∣

]

+

∫

Ss

[
∣

∣

∣

∣

maG
−T
a ·

∂Ψ

∂ma
Ns · δφa

∣

∣

∣

∣

]

+

+

∫

Ss

[
∣

∣

∣

∣

∂Ψ

∂∇ϕw
·Ns δϕw

∣

∣

∣

∣

]

+

∫

Ss

[
∣

∣

∣

∣

∂Ψ

∂∇ϕa
·Ns δϕa

∣

∣

∣

∣

]

.

One of the surface terms of the previous sum, namely the one in which ∇(δχs) appears can be integrated by
parts once more by using the surface divergence theorem. More particularly, we recognize that the second
order tensor ∇(δχs) can be decomposed as

∇(δχs) = ∇(δχs) · (Ns ⊗Ns) +∇(δχs) · (I−Ns ⊗Ns) =: (δχs)n ⊗Ns +∇Sδχs,

where we denoted by (δχs)n the normal derivative of δχs and by ∇Sδχs its surface gradient. With these
notations and applying the surface divergence theorem, the mentioned surface term appearing in the sum
(35) can be rewritten as

∫

Ss

[
∣

∣

∣

∣

(

Fs ·
∂Ψ

∂∇ε
·Ns

)

| ∇(δχs)

∣

∣

∣

∣

]

=

∫

Ss

[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

·Ns

}

· (δχs)n +

(

Fs ·
∂Ψ

∂∇ε
·Ns

)

| ∇Sδχs

∣

∣

∣

∣

]

=

∫

Ss

[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

·Ns

}

· (δχs)n

∣

∣

∣

∣

]

(36)

−
∫

Ss

[
∣

∣

∣

∣

divS
(

Fs ·
∂Ψ

∂∇ε
·Ns

)

· δχs

∣

∣

∣

∣

]

+
N
∑

i=1

∫

Ei

[
∣

∣

∣

∣

{(

Fs ·
∂Ψ

∂∇ε
·Ns

)

· νi

}

· δχs

∣

∣

∣

∣

]

,

where divS represents the divergence operator restrained on the surface Ss. Moreover Ei, i = 1, . . . , N are
the edges of the surface Ss (if any) and, if the edge Ei is regarded as the border of a surface, then νi is the
normal vector to the considered edge which is tangent to the surface (notice that νi necessarily suffers a
jump through the edge Ei). In this last formula, with a slight abuse of notation we indicate with the same
notation the jump across a surface and the jump across a line. Using Eq. (36) in Eq. (35), we are then
able to recover the variation of the potential energy which, with the sign changed, finally appears in the
variation of the action functional (12).

As for the variation of the kinetic energy density, it is easy to show that, according to Eq. (8), it reads

δΛ = ηsvs · δvs +mwv
©s
w · δv©s

w +mav
©s
a · δv©s

a +
1

2
v2
s δηs +

1

2

(

v©s
w

)2
δmw +

1

2

(

v©s
a

)2
δma

+ (cwϕ̇w + cϕ̇a)δϕ̇w + (caϕ̇a + cϕ̇w)δϕ̇a, (37)
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which, recalling the variations computed in (32) and (33) of the involved auxiliary functions can be decom-
posed as δΛ = δΛs + δΛw + δΛa + δΛϕ with

δΛs :=
(

ηsvs +mwv
©s
w +mav

©s
a

)

· δχ̇s −mwv
©s
w ·∇ (δχs) ·G−1

w · φ̇w −mav
©s
a ·∇ (δχs) ·G−1

a · φ̇a,

δΛi :=
1

2

(

v
©s
i

)2

div
(

miG
−1
i · δφi

)

+miv
©s
i ·Fs ·G−1

i ·∇ (δφi) ·G
−1
i · φ̇i −miv

©s
i ·Fs ·G−1

i · δφ̇i, i = w, a,

δΛϕ := (cwϕ̇w + cϕ̇a)δϕ̇w + (caϕ̇a + cϕ̇w)δϕ̇a.

We integrate separately the four parts of the variation of the introduced kinetic energy δΛs, δΛw and δΛa

and δΛϕ. Recalling that ηs is assumed to be constant, integrating by parts in space and time, considering
isochronous motions (δχs(0) = δχs(T )) and setting Di = −miG

−1
i · φ̇i, i = w, a we get

∫

Bs

δΛs = −
∫

Bs

[

ηsγs +mwv̇
©s
w + ṁwv

©s
w + div

(

v©s
w ⊗Dw

)

+mav̇
©s
a + ṁav

©s
a + div

(

v©s
a ⊗Da

)]

· δχs

+

∫

Ss

[
∣

∣

((

v©s
w ⊗Dw + v©s

a ⊗Da

)

·Ns

)

· δχs

∣

∣

]

,

= −
∫

Bs

(

ηsγs +mwγ
©s
w +maγ

©s
a

)

· δχs +

∫

Ss

[
∣

∣

((

v©s
w ⊗Dw + v©s

a ⊗Da

)

·Ns

)

· δχs

∣

∣

]

, (38)

where expressions (3)-(4) for v©s
w , v

©s
a , v̇

©s
w and v̇©s

a and the balances of mass (6) for ṁw and ṁa have also
been used to get the last equality.

We then integrate over Bs the terms δΛi, i = w, a. It can be recognized that integrating by parts in
space and time, considering isochronous motions (δφi(0) = δφi(T )), we have

∫

Bs

δΛi =

∫

Bs

[

−
1

2
mi∇

(

(

v
©s
i

)2
)

·G−1
i + div

(

v
©s
i ·Fs ·G−1

i ⊗Di

)

+
∂

∂t

(

miv
©s
i · Fs ·G−1

i

)

]

· δφi

+

∫

Ss

[
∣

∣

∣

∣

(

1

2
mi

(

v
©s
i

)2

G−T
i ·Ns − v

©s
i · Fs ·G−1

i ⊗Di ·Ns

)

· δφi

∣

∣

∣

∣

]

It can be checked that, using equation (4) for the definition of γ©s
i , equation (5) for ∂

(

Fs ·G−1
s

)

/∂t, equations
(6) for ṁi and simplifying, we have for i = w, a

∫

Bs

δΛi =

∫

Bs

(

miγ
©s
i ·Fs ·G−1

i

)

· δφi +

∫

Ss

[
∣

∣

∣

∣

(

1

2
miG

−T
i

(

v
©s
i

)2

·Ns −G−T
i · FT

s · v©s
i ⊗Di ·Ns

)

· δφi

∣

∣

∣

∣

]

.

(39)

As for the last term δΛϕ we integrate over Bs, we integrate by parts in time considering isochronous
motions (δϕi(0) = δϕi(T ). i = w, a ) and recalling that cw, ca and c are chosen to be constant so getting:

∫

Bs

δΛϕ = −
∫

Bs

(cwϕ̈w + cϕ̈a)δϕw −
∫

Bs

(caϕ̈a + cϕ̈w)δϕa. (40)

Starting from the obtained variations of the potential energy (Eq. (35)) and of the kinetic energy (Eqs.
(38), (39) and (40)), expression (12) for the variation of the action functional for the considered partially
saturated porous medium can be easily recognized.

B. Some useful calculations

Starting from definition (10) of ε and recalling that Js = detFs it is easy to recover that

Js =
√

det(2ε+ I).
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Differentiating this equation with respect to ε and using the chain rule, it is possible to check that

∂Js
∂ε

=
√

det(2ε+ I)(2ε+ I)−T = JsF
−1
s ·F−T

s = JsC
−T ,

where, to get the second equality, we used expression (10) for ε.
We finally start evaluating the gradient of Js. We make this calculation by using indexes and, in order

to lighten notations, we set here J := Js, we introduce the tensor C := FT
s · Fs and we denote by Cij its

components. With these notations and using the chain rule, the gradient of J can be evaluated as

J,k =
1

2
√
detC

∂(detC)

∂Cij
Cij,k =

1

2

√
detC C−T

ij Cij,k. (41)

Recalling that Cij = 2εij + δij , it is easy to recognize that

∂Cij,k

∂εlm,n
= 2δilδjmδkn. (42)

Starting from Eq. (41), it is now possible to compute the derivative of ∇J with respect to ∇ε as follows

∂(J,k)

∂(εlm,n)
=

1

2
JC−T

ij

∂Cij,k

∂εlm,n
,

which, using Eq. (42) implies
∂(J,k)

∂(εlm,n)
= J C−T

lm δkn.
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