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Abstract
Theories of second gradient elastic materials have been constructed either through the notion of an interstitial energy flux, an
additional term to be included in the balance of energy, or through an appropriate extension of the power of internal stresses.
Our aim is to propose a critical comparison of such apparently alternative points of view and show how, in some cases, they
can be reconciled with each other through an appropriate choice for the expression of the working of the internal stresses.
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1. Introduction
The dependence of constitutive relations for a solid or a fluid
on the first and second (or higher) deformation gradient, first
proposed in some pioneering papers by Toupin [1, 2], poses a
well-known conceptual obstacle to the thermodynamical frame-
work of continuum mechanics of so-called non-simple materials,
as first shown by Gurtin [3]. The issue has been confronted by
means of different approaches, through the introduction either
of internal variables [4] or non-standard interaction terms (see,
e.g., [5, 6, 7, 8, 9, 10, 11, 12, 13]).

In particular, motivated by the purpose of describing spatial
interaction effects of longer range in elastic materials, Dunn and
Serrin developed in a remarkable article [9] a thermodynamic
scheme where an additional flux u, the interstitial energy flux,
is inserted into the balance of energy, beside the heat flow and
the standard working of the stress. Such an “extra flux” is not
included in the entropy inequality and this framework is then
shown to be sufficient for allowing a dependence of constitutive
properties on higher-order gradients of deformation. Dunn and
Serrin’s contribution is all the more interesting in view of the fact
that, among other things, a symmetric stress tensor is obtained,
thus avoiding the need for micro-polar couples or some other
non-standard quantities.

Some Authors have taken the alternative approach of pos-
tulating an expression of the stress-power (sometimes called
“inner working”) which includes one or more additional terms,
each one of them linear in the second (or higher) velocity gra-
dient. This idea is basically at the center of the fundamental
contribution by Germain [10, 11, 12] and, in some way, is shared
by many subsequent developments, due to a variety of Authors
(see, e.g., [14, 15, 16, 17]).

This presentation has the much limited aim of drawing the
interested reader’s attention to a seemingly minor detail which,

to our knowledge, might have gone unnoticed in the related
Literature (or, at least, among the roughly 140 papers where [9]
is cited).

First, we introduce an innocuous slight generalization in the
expression of the stress-power: we do not take the “hyperstress”
(the tensorial coefficient of the second-gradient of velocity) to
be symmetric in the last pair of indexes but allow for a skew-
symmetric part which is, of course, powerless, but, interestingly,
turns out not be useless. Next, by use of a key technical detail
borrowed from the Appendix of [9], we show that this choice
makes possible the deduction of constitutive equations for the
free-energy ψ and the Piola or Cauchy stresses T̂ and Ŝ which
are exactly coincident with what was derived through the in-
troduction of the interstitial energy by Dunn and Serrin [9]. In
particular, the powerless part of the stress-power is what makes
the Cauchy stress inherently symmetric, with no need to resort
to microcouples.

We believe to be of some interest to know that two different
approaches (one based on the interstitial energy and the other
one on the introduction of a second-gradient inner power) can
be (partially, at least) reconciled. We also think that our compu-
tations shed further light on the “inner working” of Dunn and
Serrin’s approach [9].

We use standard index notation so that our formulas are
straightforward an unambiguous (and not so elegant, perhaps),
with Greek indexes for the coordinates of points and components
of vectors and tensors with respect to a cartesian coordinate sys-
tem in the reference configuration B, and small Latin indexes
for points and components in Bt , the present configuration at
current time.

Thus, we shall consistently write Fhα and Fhαβ = Fhβα for
the cartesian components of the first and second deformation
gradient of a motion described by xh(pα , t), with Jacobian J =

1
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det[Fhα ]. As usual, ρ denotes the mass density, with ρ0 = ρJ the
reference density, which we assume to be uniform. The velocity
field in the material description is ẋh = ∂txh(pα , t) while for the
spatial description we write vi (superposed dots denote material
time derivatives, while partial derivatives of a field Φ with
respect to spatial and material coordinates are written as Φ,h or
Φ,α ). Thus, Ḟhα = ẋh,α and Ḟhαβ = ẋh,αβ . Moreover, vi, j and
vi, jk = vi,k j are the first and second spatial velocity gradient.

2. The stress-power
In a significant number of contributions, at least since Germain’s
work [10], the starting point for a discussion of second-gradient
materials is an appropriate expression for the stress power (or
inner working) associated with a part P . Here, as in [10, 17,
18, 14], we write such quantity as

W int
Pt

=
∫

Pt

[Ti jvi, j +Gi jkvi, jk]dV, (1)

where Ti j and Gi jk (which is often named hyperstress) are ba-
sically just seen as coefficients of vi, j and vi, jk. In other words,
such tensors are assumed to belong to the dual space of the first
and second velocity gradient, in the same way as a force can
be seen as a covector whose pairing with the velocity yields
the (zeroth-order) working. In particular, quite naturally, it is
usually stated, implicitly or explicitly, that, without loss of gen-
erality, one may assume symmetry of Gi jk with respect to the
second and third index

Gi jk = Gik j. (2)

The motivation is almost obvious: a skew-symmetric part (with
respect to the same pair of indexes) would do no work for any
motion of the body and, thus, would appear to be useless and of
no effects.

In the case of Germain’s article [10] such (entirely reason-
able) choice can be deduced when it is stated that Gi jk belongs to
a space of dimension 3×6 = 18, while in [17] this is explicitly
written in eq. (26) and motivated on p. 521.

The goal of this paper is to find a connection between the
modeling of longer range interactions by means of the inter-
stitial work flux, as in [9], and an alternative approach, as in
[17, 10, 5], which is based on the stress-power expressed with
the introduction of the hyperstress Gi jk. We show that this sec-
ond approach leads to an equivalent Cauchy stress tensor and
interstitial work flux provided a more general hyperstress is
considered, which is not assumed to be symmetric in the sense
of (2).

We find more convenient to develop our presentation follow-
ing a Lagrangian description and, coherently with this choice,
we write the stress-power in the reference configuration in the
form

W int
P =

∫
P
[Shα Ḟhα +Lhαβ Ḟhαβ ]dV (3)

which, conceptually, is clearly equivalent to (1).

A detailed discussion of the relationship between the alter-
native expressions for the stress-power provided by (1) and (3)
is contained in [18, § 3.3]. As shown there, one can derive both

Ḟhα = vh,kFkα (4)
Ḟhαβ = vh,kFkαβ + vh,klFkα Flβ (5)

and the inverse relations

vh,k = Ḟhα F−1
αk (6)

vh,kp =−Ḟhα F−1
αi Fiγβ F−1

γk F−1
β p + Ḟhγβ F−1

γk F−1
β p (7)

In view of (1), (3), (4), (5), (6) and (7), as shown in [18,
Prop. 3], condition W int

P =W int
Pt

for all motions and all parts P
is then guaranteed by relations

JThk = Shα Fkα +Lhαβ Fhαβ

JGhkp = Lhαβ Fkα Fpβ (8)

which can be inverted as

Shα = JThkF−1
αk −Lhγβ Fkγβ F−1

αk

Lhαβ = JGhklF−1
αk F−1

β l (9)

and provide the connection between stress and hyperstress in
the Eulerian and Lagrangian description.

As we mentioned before, tensors Gi jk and Lhαβ , related
through (8) and (9), are both usually supposed to be symmetric
in last two indexes. The crucial detail of this work is that we are
not making such an assumption. Indeed, within a Lagrangian
description, coherent with (3), we shall find convenient to split
the “hyperstress” Lhαβ into a symmetric and a skew-symmetric
part (with respect to Greek indexes):

Lhαβ = Shαβ +Whαβ . (10)

Of course, while Shαβ = Shβα , the skew-symmetric part Whαβ

satisfies the identity

Whαβ =−Whβα

and, being “powerless” when inserted into (3), seems at first to
be useless. It turns out that this is not the case, however.

While our contribution does not improve the theory pro-
posed by Dunn & Serrin in [9] we hope it might be of some help
in clarifying the relationship between “stress-power” and “inter-
stitial energy”, by pointing out a seemingly unnoticed detail.

3. Interstitial energy and stresses
We take as a starting point the (postulated) Lagrangian expres-
sion for the stress-power (3) and express such quantity by means
of a volume and a surface integral. For a part P with outward
unit normal mα on the boundary ∂P , through repeated integra-
tions by parts and applications of the divergence theorem we
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have

W int
P =

∫
P
[Shα Ḟhα +Lhαβ Ḟhαβ ]dV

=
∫

P
[(Shα ẋh),α −Shα,α ẋh

+(Lhαβ Ḟhα),β −Lhαβ ,β Ḟhα ]dV

=
∫

∂P
[Shα mα ẋh +Lhαβ Ḟhα mβ ]dA

−
∫

P
[Shα,α ẋh +Lhαβ ,β Ḟhα ]dV

=
∫

∂P
[Shα mα ẋh +Lhαβ Ḟhα mβ ]dA

−
∫

P
[Shα,α ẋh +(Lhαβ ,β ẋh),α −Lhαβ ,βα ẋh]dV

=
∫

∂P
[(Shα −Lhαβ ,β )mα ẋh +Lhαβ Ḟhα mβ ]dA

−
∫

P
[Shα,α −Lhαβ ,βα ]ẋh dV.

Now, for

Ŝhα := Shα −Lhαβ ,β (11)

and

wβ := Lhαβ Ḟhα , (12)

the stress-power (3) takes the form

W int
P =

∫
∂P

Ŝhα mα ẋh dA+
∫

∂P
wβ mβ dA−

∫
P

Ŝhα,α ẋh dV

or, in absolute notation,

W int
P =

∫
∂P

Ŝm · ẋdA+
∫

∂P
w ·mdA−

∫
P

Div Ŝ · ẋdV.

In view of the identity

Div(Ŝt ẋ) = Ŝ · Ḟ+Div Ŝ · ẋ

(a superscript t denotes the transpose) the stress-power can be
finally written as

W int
P =

∫
∂P

w ·mdA+
∫

P
Ŝ ·ḞdV =

∫
P
[Divw+ Ŝ ·Ḟ]dV. (13)

It is natural to identify Ŝ, as defined by (11), with the Piola-
Kirchhoff stress tensor, in view of its role in the expression (13),
and w with the interstitial energy flux vector (per unit area in
the reference configuration) introduced by Dunn and Serrin [9].

In order to better understand such identifications, it is useful
to see what would happen had we developed our computations
beginning from expression (1). By repeated applications of the
divergence theorem to the region Pt with outward unit normal
n on its boundary ∂Pt , we obtain

W int
Pt

=
∫

∂Pt

u ·ndA+
∫

Pt

T̂ ·gradvdV

=
∫

Pt

[divu+ T̂ ·gradv]dV,

where

T̂hk := Thk−Ghkl,l (14)

and

uh := Ghklvh,k. (15)

Notice that, from definition (15), in view of (8), (6) and (12),
we have

ul = J−1Lhαβ Fkα Flβ vh,k = J−1Lhαβ Fkα Flβ Ḟhγ F−1
γk

= J−1Lhγβ Flβ Ḟhγ = J−1Flβ Lhγβ Ḟhγ

= J−1Flβ wβ ,

which can be written as Ju = Fw. This relation guarantees that
the flux of u through ∂Pt is the same as the flux of w through
∂P.

It is interesting to notice that T̂, as defined by (14), and Ŝ,
as defined by (11), are connected through the standard relation
JT̂F−t = Ŝ, which follows from some rearrangements:

JT̂hkF−1
αk = J(Thk−Ghkl,l)F−1

αk = JThkF−1
αk − JGhkl,lF−1

αk

= J[J−1(Shγ Fkγ +Lhγβ Fkγβ )]F
−1
αk

− J[J−1Lhγβ Fkγ Flβ ],lF
−1
αk

= Shα +Lhγβ Fkγβ F−1
αk − J(J),lFlβ Lhγβ Fkγ F−1

αk

− JJ−1(Lhγβ Fkγ Flβ ),lF
−1
αk

= Shα +Lhγβ Fkγβ F−1
αk + J−1J,lFlβ Lhγβ Fkγ F−1

αk

−Lhγβ ,lFlβ Fkγ F−1
αk −Lhγβ Fkγβ F−1

αk

−Lhγβ Fkγ Flβ ,lF
−1
αk

= Shα +Lhγβ Fkγβ F−1
αk +Flρβ F−1

ρl Lhγβ Fkγ F−1
αk

−Lhαβ ,β −Lhγβ Fkγβ F−1
αk −Lhγβ Flβρ F−1

ρl Fkγ F−1
αk

= Shα −Lhαβ ,β = Ŝhα

where the identity J,β = JFhαβ F−1
αh has been used. We can then

regard T̂ as the Cauchy stress tensor provided we prove that
T̂ = T̂t .

The expression for u given in (15) is a special case of the
interstitial energy flux derived in the theory proposed by Dunn
and Serrin [9, § 2]. It is important to point out that, as noted
by Dell’Isola and Seppecher in the conclusion of [7, §5], the
interstitial energy flux u can be interpreted as the sum of the
power of edge contact forces and other types of mechanical
interactions. We do not enter into a detailed discussion of this
issue, however, and stay within our more limited context.

4. Frame indifference of the stress-power
Now, we impose the requirement of frame-invariance on the
stress-power per unit volume W int. For Q = [Qkh] the rotation
which connects observers O and O+, we easily deduce that

F+
hα

= QhkFkα F+
hαβ

= QhkFkαβ
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from which

Ḟ+
hα

= Q̇hkFkα +QhkḞkα

Ḟ+
hαβ

= Q̇hkFkαβ +QhkḞkαβ

For

W int = Shα Ḟhα +Lhαβ Ḟhαβ

W int,+ = S+hα
Ḟ+

hα
+L+

hαβ
Ḟ+

hαβ

it follows that

W int =W int,+⇔


S+kα

= QkhShα

L+
kαβ

= QkhLhαβ

Shα Fkα +Lhαβ Fkαβ is symmetric

(16)

(The details can be found in [18, Prop. 8, eq. 87]).
As we shall later see, requirement (16)3 is equivalent to

frame indifference for the free energy function ψ(F,∇F,θ ,∇θ).
Thus, this is not a condition which we find unnatural.

5. Stress-power and balance of angular mo-
mentum
We have not yet made any use of (10), which crucially splits
Lhαβ into a symmetric and a skew-symmetric part. In this
section we show that it is precisely the presence of the powerless
skew-symmetric term Whαβ which makes possible, in general, to
obtain a symmetric stress tensor and, thus, balances the angular
momentum.

More precisely, as we prove here below, the (seemingly
useless) part Whαβ of Lhαβ is fully determined by condition
T̂ = T̂t as a function of the symmetric part Shαβ . In a sense, we
value this connection to be the main contribution of our article
on this topic of second-gradient materials.

The identification of Ŝ and T̂ with the Piola and Cauchy
stress are completed by proving that

ŜFt = FŜt (17)

which amounts to the symmetry of T̂ = J−1ŜFt .
In view of (11), condition (17) takes the form

Shα Fkα −Lhαβ ,β Fkα = Skα Fhα −Lkαβ ,β Fhα ,

which can be rewritten as

Shα Fkα − (Lhαβ Fkα),β +Lhαβ Fkαβ

= Skα Fhα − (Lkαβ Fhα),β +Lkαβ Fhαβ .

Assuming that (16)3 is satisfied, symmetry of the Cauchy stress
tensor is now guaranteed by

Lhαβ Fkα = Lkαβ Fhα . (18)

In view of (10), condition (18) can be easily written as

Shαβ Fkα +Whαβ Fkα = Skαβ Fhα +Wkαβ Fhα ,

or, after multiplication by Fiβ , as

Shαβ Fkα Fiβ +Whαβ Fkα Fiβ = Skαβ Fhα Fiβ +Wkαβ Fhα Fiβ . (19)

For

Dhki := Shαβ Fkα Fiβ Hhki :=Whαβ Fkα Fiβ

we have

Dhki = Dhik Hhki =−Hhik

and condition (19) takes the final form

Dhki +Hhki = Dkhi +Hkhi

or, equivalently,

Dhki−Dkhi = Hkhi−Hhki. (20)

We now borrow from an idea of Dunn & Serrin [9, Appendix
A, p. 122] and permute indexes to obtain

Dhik−Dihk = Hihk−Hhik (21)

and

Dkih−Dikh = Hikh−Hkih. (22)

A sum of (20), (21) and (22), in view of symmetries and skew-
symmetries, gives

2Dhki−2Dikh = 2Hkhi

so that

Wkαβ Fhα Fiβ = Shαβ Fkα Fiβ −Siαβ Fkα Fhβ .

It is useful to multiply the above expression by F−1
γi

Wkαγ Fhα = Shαγ Fkα −F−1
γi Siαβ Fkα Fhβ (23)

and again by F−1
µh to obtain

Wkµγ = F−1
µh Shαγ Fkα −F−1

γi Siαµ Fkα . (24)

Thus, symmetry of the Cauchy stress tensor is guaranteed
by a unique appropriate choice of the skew-symmetric (and
“powerless”) part Whαβ of Lhαβ , which can be expressed linearly
through the symmetric part Shαβ .

Moreover, we anticipate that the skew-symmetric tensor part
Whαβ , as determined by (24), is what makes the flux w frame
indifferent.

6. Frame indifference of the interstitial en-
ergy flux
Since w is a material vector field in the reference configuration
frame-indifference is satisfied by condition w+

β
= wβ for all
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changes of observer. In view of definition (12) and condition
(16) we write

w+
β
= L+

kαβ
Ḟ+

kα
= QkhLhαβ (QksFsα)

·

= QkhLhαβ Q̇ksFsα +QkhLhαβ QksḞsα

= Qt
hkQ̇ksLhαβ Fsα +Qt

skQkhLhαβ Ḟsα

=WhsLhαβ Fsα +Lsαβ Ḟsα

= Lhαβ FsαWsh +wβ

(where Whs = QkhQ̇ks is skew-symmetric and arbitrary).
Thus,

w+
β
= wβ ⇔ Lhαβ Fsα = Lsαβ Fhα

and this is equivalent to condition (18), discussed before in
connection with symmetry of the Cauchy stress T̂. We conclude
that frame invariance of w and symmetry of T̂ are guaranteed by
the same property of the stress-power, which is satisfied through
the appropriate choice (24) for Whαβ expressed in (24).

7. Balance of energy and entropy inequality
The balance of linear momentum is postulated in the classical
form, which locally reduces to

ρ0ẍ = ρ0b0 +Div Ŝ,

while balance of energy is given by

d
dt

∫
P
[ρ0e+

1
2

ρ0ẋ2]dV =
∫

∂P
[Ŝm · ẋ+w ·m−q0 ·m]dA

+
∫

P
[ρ0b0 · ẋ+ρ0r]dV

where all terms are classical, except for the interstitial energy
flux w, which we add following Dunn and Serrin’s approach.
The local form is obtained as

ρ0ė = ρ0r+ Ŝ · Ḟ+Divw︸ ︷︷ ︸
W int

−Divq0,

where the role of the stress-power is clear.
We follow [9] and write the entropy inequality in the reduced

Lagrangian local form as

ρ0(ψ̇ +ηθ̇)− Ŝ · Ḟ−Divw+
q0 ·∇θ

θ
≤ 0. (25)

Of course, the fact that the interstitial energy flux is not sub-
jected to the same treatment of the heat flux q0 is a very touchy
point, which is discussed at great length by Dunn and Serrin
in [9]. Our goal, here, is much limited and we do not discuss
such a delicate issue but only remark that Divw is a mechanical
power.

8. A second-gradient free energy
We make a very simple assumption for the free-energy ψ , and
take it as a function of the first and second deformation gradient,
together with the temperature and its gradient:

ψ(F,∇F,θ ,∇θ), ψ(Fhα ,Fhαβ ,θ ,θ,γ).

Frame-indifference of ψ is expressed by the condition that

ψ(QF,Q∇F,θ ,∇θ) = ψ(F,∇F,θ ,∇θ)

for all rotations Q. This is discussed in detail by Dunn & Serrin
[9, p. 115] and, here, can be shown to be equivalent to

ψFhα
Fkα +ψFhαβ

Fkαβ = ψFkα
Fhα +ψFkαβ

Fhαβ , (26)

which shall be discussed in more detail in a moment.
It is now useful to compute

ψ̇ = ψθ θ̇ +ψFhα
Ḟhα +ψθ,γ θ̇,γ +ψFhαβ

Ḟhαβ

and

Divw = wβ ,β =
(
Lhαβ Ḟhα

)
,β
= Lhαβ ,β Ḟhα +Lhαβ Ḟhαβ

= Lhαβ ,β Ḟhα +Shαβ Ḟhαβ +Whαβ Ḟhαβ︸ ︷︷ ︸
≡0

= Lhαβ ,β Ḟhα +Shαβ Ḟhαβ .

Thus, the entropy inequality (25) takes the form

ρ0
(
ψθ θ̇ +ψFhα

Ḟhα +ψθ,γ θ̇,γ +ψFhαβ
Ḟhαβ +ηθ̇

)
− Ŝhα Ḟhα −Lhαβ ,β Ḟhα −Shαβ Ḟhαβ +θ,γ q0

γ/θ ≤ 0

and from this, with the usual line of arguments, we deduce

ψθ +η = 0, ψθ,γ = 0, ρ0ψFhα
= Ŝhα +Lhαβ ,β ,

ρ0ψFhαβ
= Shαβ ,

(27)

and the classical condition on the heat flux

θ,γ q0
γ ≤ 0, ∇θ ·q0 ≤ 0.

After multiplication by ρ0 and in view of (27)3,4, condition
(26) is transformed into

(Ŝhα +Lhαβ ,β )Fkα +Shαβ Fkαβ

= (Ŝkα +Lkαβ ,β )Fhα +Skαβ Fhαβ .

Finally, definition (11) shows that (26) can be expressed as

Shα Fkα +Shαβ Fkαβ = Skα Fhα +Skαβ Fhαβ (28)

which coincides with (16)3. Thus, frame indifference of the
free energy ψ(F,∇F,θ ,∇θ) implies the invariance of the stress-
power under a change of observer.

We now turn to (27)3 which we use as a starting point for de-
riving an expression for Ŝhα . In view of (10), with an integration
by parts we have

Ŝhα = ρ0ψFhα
−Lhαβ ,β

= ρ0ψFhα
−Shαβ ,β −Whαβ ,β

= ρ0ψFhα
−ρ0(ψFhαβ

),β −Whαβ ,β

= ρ0
(
ψFhα

− (ψFhαβ
),β
)
−Whαβ ,β .

(29)
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From (24) it follows that

Whαβ ,β = ρ0
(
F−1

αk ψFkγβ
Fhγ −F−1

βk ψFkγα
Fhγ

)
,β

and, by substitution in (29), we have

Ŝhα = ρ0
[
ψFhα

− (ψFhαβ
),β

+
(
F−1

βk ψFkγα
Fhγ −F−1

αk ψFkγβ
Fhγ

)
,β

]
which is exactly equal to eq. 3.4 in [9, p. 114].

Finally, if we wish to compute the Cauchy stress tensor T̂
we write

T̂hk =
1
J

Ŝhα Fkα =
ρ

ρ0
Ŝhα Fkα

= ρ
(
ψFhα

Fkα − (ψFhαβ
),β Fkα

)
− ρ

ρ0
Whαβ ,β Fkα

(30)

and, from (23), we deduce that

Whαβ Fkα = ρ0
(
ψFkαβ

Fhα −F−1
β i ψFiαγ

Fhα Fkγ

)
.

Moreover, since

Whαβ ,β Fkα =
(
Whαβ Fkα

)
,β
−Whαβ Fkαβ︸ ︷︷ ︸

≡0

=
(
Whαβ Fkα

)
,β

from (30) we deduce

T̂hk = ρ
(
ψFhα

Fkα − (ψFhαβ
),β Fkα

)
−ρ
(
ψFkαβ

Fhα −F−1
β i ψFiαγ

Fhα Fkγ

)
,β
,

an expression which we manipulate into

T̂hk = ρ
[(

ψFhα
Fkα +ψFhαβ

Fkαβ

)
+
(
F−1

β i ψFiαγ
Fhα Fkγ

)
,β

−
(
ψFhαβ

Fkα +ψFkαβ
Fhα

)
,β

]
.

(31)

Again, this is exactly the same expression for T (T̂, here) found
in [9, p. 114, eq. (3.2)1]. A glance at (31) confirms that (28)
makes T̂hk symmetric.
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[10] Paul Germain. La méthode des puissances virtuelles en
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