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Several classes of materials, including industrial elastomers and biological tissues, are commonly
modelled as hyperelastic, i.e., the stress is obtained by differentiation of the elastic strain energy potential
with respect to the conjugated strain. Due to the complexity arising from material, geometrical and
contact-related nonlinearities, a numerical solution of boundary problems by means of the Finite Element
Method (FEM) is often imperative. Commercially available FEM software packages offer a limited set of
anisotropic potentials and user-defined material subroutines must often be written and coupled with the
main code. Within each step of the analysis, a congruent deformation gradient tensor is iteratively updated
by the main code and prompted as an input to the subroutine, which returns the appropriate forms of the
stress tensor and of the fourth-order elasticity tensor. The updated Lagrangian formulation implemented
in ABAQUS/Standard employs the spatial elasticity tensor providing the power-conjugation of the Green-
Naghdi rate of the Cauchy stress with the deformation rate [3]. The Cartesian-coordinate representation
of this spatial elasticity tensor has been first reported by Simo and Hughes [4], based on a result obtained
by Mehrabadi and Nemat-Nasser [2]. Building upon these findings, we elaborated a completely covariant,
coordinate-free expression of the same tensor and thoroughly analysed its symmetries.

In modern Continuum Mechanics, a body B and the space S are three-dimensional Riemannian
manifolds with metric tensors GGG and ggg, respectively (in the trivial case, B⊂ R3, and S≡ R3), a motion is
a smooth map χ : B×R+

0 → S, and no particular reference configuration is considered.
The deformation gradient FFF has components Fa

A = χa
,A and determinant J = detFFF . The velocity

gradient lll = gradvvv is valued in [TS]11 (i.e., a spatial second-order mixed tensor), and its counterpart
lll[ = ggglll valued in [TS]02 (i.e., fully covariant) can be decomposed into lll[ = ddd+www, where ddd is the symmetric
strain rate and www is the skew-symmetric spin tensor. The counterparts of these tensors in [TS]11 are
denoted d and w, respectively. The skew symmetric tensor field ΩΩΩ = ṘRRRRR−1, where RRR is the rotation tensor
of the polar decomposition FFF = RRR.UUU =VVV .RRR, is valued in [TS]11, and coincides with w for rigid motions.

We seek for a tensor field V, valued in [TS]40 (i.e., fully contravariant), such that

(w−ΩΩΩ)ggg−1 = V : ddd, (1)

and, rewriting in covariant formalism the Cartesian-coordinate results by Mehrabadi and Nemat-Nasser
[2], employing the special tensor products ⊗ and ⊗ defined by Curnier et al. [1], we obtain

[I1(VVV ) I2(VVV )− I3(VVV )] V =
[
I1(VVV )2 (VVV ⊗ ggg−1−ggg−1 ⊗ VVV )

− I1(VVV )(bbb ⊗ ggg−1−ggg−1 ⊗ bbb)+(bbb ⊗VVV −VVV ⊗ bbb)
]

: IT , (2)

where VVV is the left stretch, bbb the left Cauchy-Green deformation, Ik are the invariants, and I is the
fourth-order symmetric identity. As suggested by Eq. (1), tensor V is skew-symmetric on its first couple
of feet (indices), symmetric on its second couple of feet (indices) and lacks diagonal symmetry.
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Pushing forward the time derivative of the second Piola-Kirchhoff stress SSS, we obtain the Lie derivative
of the Kirchhoff stress τττ (which is related to the Cauchy stress σσσ by τττ = J σσσ ),

Lχ [τττ] = χ∗[(χ
∗[τττ])

•
] = FFF ṠSSFFFT = FFF [(FFF−1

τττ FFF−T )
•
]FFFT = τ̇ττ− lll τττ− τττ lllT . (3)

Solving for τ̇ττ , using lll = d+w, and subtracting w−ΩΩΩ from both sides, we obtain the Green-Naghdi rate
of the Kirchhoff stress as

τττ
� = τ̇ττ−ΩΩΩτττ− τττ ΩΩΩ

T = Lχ [τττ]+dτττ + τττ dT +(w−ΩΩΩ) τττ + τττ (w−ΩΩΩ)T . (4)

Using Eq. (1) and the special tensor products ⊗ and ⊗ [1], we obtain, after some manipulation,

τττ
� = Lχ [τττ]+ [ggg−1 ⊗ τττ + τττ ⊗ ggg−1] : ddd +[iii⊗ (τττ ggg)+(τττ ggg)⊗ iii] : V : ddd. (5)

For a hyperelastic material with elastic potential W , the time derivative of the second Piola-Kirchhoff
stress SSS = (∂W/∂EEE)(EEE) is related to the time derivative of the Green-Lagrange strain EEE by the relation

ṠSS = C : ĖEE (6)

where C= (∂ 2W/∂EEE2)(EEE) is the material elasticity tensor. The spatial counterpart of this expression is

σσσ
◦ = J−1Lχ [J σσσ ] = J−1Lχ [τττ] = C : ddd. (7)

where σσσ◦ is the Truesdell rate of the Cauchy stress and C = J−1 χ∗[C] is the spatial elasticity tensor.
Substituting into Eq. (5), we finally obtain

τττ
� = J C : ddd +[ggg−1 ⊗ τττ + τττ ⊗ ggg−1] : ddd +[iii⊗ (τττ ggg)+(τττ ggg)⊗ iii] : V : ddd. (8)

which, factorising ddd on the right, takes the final form

τττ
� = B : ddd =

[
J C+ggg−1 ⊗ τττ + τττ ⊗ ggg−1 +[iii⊗ (τττ ggg)+(τττ ggg)⊗ iii] : V

]
: ddd. (9)

where

B = J C+ggg−1 ⊗ τττ + τττ ⊗ ggg−1 +[iii⊗ (τττ ggg)+(τττ ggg)⊗ iii] : V (10)

is the spatial fourth-order elasticity tensor associated with the Green-Naghdi rate of the Kirchhoff stress,
and has the component form

[B]abcd = J[C]abcd +gac
τ

bd + τ
ad gbc +[δ a

pτ
bh ghq + τ

ah ghq δ
b

p] [V]
pqcd . (11)

As an applicative example to support our findings, a planar biaxial test on a biological tissue specimen was
simulated in ABAQUS/Standard, and the results of simulations using a built-in material and a user-defined
material subroutine were compared.
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