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A unified geometric treatment of material defects

Abstract
A unified theory of material defects, incorporating both the smooth and the singular descriptions, is presented based upon the
theory of currents of Georges de Rham. The fundamental geometric entity of discourse is assumed to be represented by a
single differential form or current, whose boundary is identified with the defect itself. The possibility of defining a less restrictive
dislocation structure is explored in terms of a plausible weak formulation of the theorem of Frobenius. Several examples are
presented and discussed.
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Introduction
While the precise definition of the concept of material defect
must be left to every particular context, a common feature of all
theories dealing with defects (dislocations, inhomogeneity, and
so on) appears to be that the presence of defects translates itself
mathematically into the lack of integrability of some geometric
entity. In a general differential geometric framework, questions
of integrability pertain to differential forms and their exactness
or lack thereof. It seems appropriate, therefore, to undertake a
unified treatment of defects by associating to any possible struc-
ture under consideration one or more differential forms. On the
other hand, since differential forms are, by definition, smooth
entities, it would appear that the rich variety of isolated defects,
whose practical and historical importance cannot be denied,
might be left out and that a unified treatment encompassing both
the continuous and discrete cases would remain out of reach of
a single formal apparatus. The situation is similar in many other
engineering applications, where concentrated entities (forces,
masses, charges) can be seen as limiting cases of their smooth
counterparts. The unified mathematical treatment of these cases
was historically achieved by the theory of distributions, where
the singular entities are represented not by functions but rather
by linear functionals on a suitable space of test functions. The
most common example is provided by the Dirac delta which
assigns to each compactly supported smooth function in R its
value at the origin. Since a scalar field can be considered as
a particular case of a differential form, it is not surprising that
L. Schwartz’s theory of distributions can be extended to forms
of all orders. This extension, achieved by G. de Rham [1], is
completely general and independent of any metric considera-
tions, a feature that should be considered essential in a truly

general geometric setting. De Rham introduced the terminology
of currents to designate his generalized differential forms. It is
this tool that will serve our purposes in the present formulation
of the unified theory of defects.1

1. Currents
1.1 Definition
A p-current on an n-dimensional manifold M is a continuous2

linear functional T [φ ] on the vector space of all C∞ p-forms φ

with compact support in M . To understand in what sense this
definition is consistent with that of smooth forms, it suffices to
exhibit the latter as a particular case of the former. Let, therefore,
ω represent a smooth p-form on M . We can uniquely associate
to it the (n− p)-current Tω defined as the linear operator

Tω [φ ] =
∫
M

ω ∧φ , (1)

for all (n− p)-forms φ with compact support in M . Strictly
speaking, the (n− p)-current Tω cannot be “equal” to the p-form
ω , but they are indistinguishable from each other in terms of
their integral effect on all “test forms” φ . Thus, a form bears
to its associated current the same relation that a function bears
to its associated distribution. An important non-trivial example
of a current that is not associated to any differential form is the
following. Let s be a p-simplex in M . We associate to it the
p-current defined by:

Ts[φ ] =
∫
s

φ , (2)

1This work extends our previous article [2].
2By continuity we mean that the sequence of evaluations T [φi] on a sequence

of C∞ p-forms supported within a common compact subset of M tends to zero
whenever the coefficients and all their derivatives of a coordinate representation
of the forms φi tend to zero uniformly as i→ ∞.
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for all compactly supported p-forms φ . The definition above
can be extended by linearity to arbitrary chains. These examples
show how an integrand and a domain of integration are unified
under the single formal umbrella of currents.

1.2 Operations
1. Currents of the same dimension can be added together

and multiplied by real numbers in an obvious way.
2. The product of a p-current T with a q-form α is the

(p−q)-current Txα defined as:

(Txα)[φ ] = T [α ∧φ ]. (3)

Similarly,

αyT = (−1)(n−p)q Txα. (4)

3. The product of a p-current T with a vector field X is the
(p+1)-current:

(T ∧X)[φ ] = T (Xyφ ]. (5)

4. The boundary of a p-current T is the (p−1)-current

∂T [φ ] = T [dφ ]. (6)

Using Stokes’ theorem for chains, it is easy to show that, for
any chain c,

∂Tc = T∂c. (7)

1.3 Possibilities
The notion of currents opens the doors for generalizing classi-
cally smooth differential geometric objects, such as connection,
torsion and curvature. While this idea is beyond the scope of
this paper, it is not difficult to intuit the possibilities. Consider,
for example, a (non-zero) decomposable differential p-form ω

on an n dimensional differentiable manifold M . Thus, there
exist p linearly independent 1-forms ωi (i = 1, ..., p) such that:

ω = ω1∧ ...∧ωp. (8)

Such a form uniquely determines at each point of x ∈M an
(n− p)-dimensional subspace Hx of the tangent space TxM . A
vector v ∈ TxM belongs to Hx if ωi(v) = 0 for each i = 1, ..., p.
The collection H of all the subspaces Hx is called a (geomet-
ric) (n− p)-dimensional distribution on M . Conversely, given
a distribution, the corresponding decomposable form ω is de-
termined up to multiplication by a scalar field α : M → R. A
submanifold S of M is called an integral manifold of the distri-
bution H if for every s ∈S we have TsS = Hs. A distribution
is completely integrable if at every point x it admits an integral
manifold of maximal dimension (i.e., n− p). According to (one
of the versions of) the theorem of Frobenius, a distribution H
defined by a decomposable form ω is completely integrable if,
and only if, there exists a 1-form β such that:

dω = β ∧ω. (9)

This is tantamount to saying that, for some choice of the scalar
degree of freedom α , the form αω is closed, namely, there

exists an integrating factor α such that d(αω) = 0. So far, we
have been dealing with the smooth case. Assume now that we
have a means of characterizing the decomposability of a current
(perhaps as the limit of a sequence of non-zero decomposable
forms). We could now declare that a decomposable p-current
T determines a p-dimensional singular geometric distribution
on M and define the complete integrability of the singular
distribution by the condition:

∂T = βyT, (10)

for some 1-form β .3 A stronger condition would be to require
that β be closed. Notice that since connections in general can be
regarded as (horizontal) distributions on fibre bundles, and since
the curvature of a connection is related to its complete integra-
bility, we can expect that singular connections can be introduced
by means of decomposable currents and their non-vanishing
curvature can be detected by the violation of a condition such as
(10). By this means, a situation is envisioned in which the stan-
dard curvature vanishes almost everywhere and is concentrated,
as it were, at a single point. We remark that Equation (10) is by
no means the result of a theorem, but only a possible definition
of complete integrability of a singular distribution. Clearly, the
fact that β is a smooth form may severely limit the singular
distributions that can be considered completely integrable.

2. Bravais hyperplanes
2.1 The smooth case
The traditional heuristic argument to introduce continuous dis-
tributions of dislocations in crystalline materials calls for the
specification of a frame field (or repère mobile) in the body
manifold, and the consequent distant parallelism.4 An alter-
native, dual, picture is obtained by means of a co-frame field,
which can be regarded as an Rn-valued 1-form on M . This
point of view suggests perhaps that n linearly independent 1-
forms might constitute a convenient point of departure for our
desired generalization. Each of these 1-forms would represent a
family of Bravais planes. It comes as a surprise, however, that
defects are meaningful and detectable with just a single family
of such planes or, more specifically and less surprisingly, that
integrability conditions can be associated with a single 1-form
on a manifold. Geometrically, a 1-form (always decomposable)
induces an (n− 1)-dimensional distribution, that is, a field of
hyperplanes. It is physically important to point out that, relin-
quishing the multiplicative degree of freedom alluded to in the
previous section, a 1-form also specifies a local density of these
Bravais hyperplanes. Indeed, a covector acting on a vector space
defines a family of parallel hyperplanes and the evaluation of
the covector on a given vector can be pictorially regarded as the
‘number of hyperplanes’ pierced by the vector. We have at our

3As a curiosity, it is interesting to remark that Equation (10) can be in-
formally regarded as the eigenvalue problem of the boundary operator ∂ . Its
“eigenvectors” are the completely integrable currents.

4This feature is present also, albeit with the degree of freedom afforded by
material symmetries, in the constitutively based approach propounded by Kondo
[3] and Noll [4], whereby points are compared, in a groupoid-like fashion, via
material isomorphisms between their tangent spaces.
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disposal, therefore, two somewhat different images induced by
the specification of a 1-form ω on a manifold M . The first one
would look at the integrability of the form itself by demanding
that ω be closed, namely:

dω = 0. (11)

Physically, this condition means not only that the induced dis-
tribution is completely integrable, but also that the local hyper-
plane densities are mutually compatible. More to the point, we
expect the Bravais hyperplanes to fit well with their neighbours
not only as hyperplanes but also as stacks thereof at each point.
The second image, on the other hand, would demand only the
nice fit between the hyperplanes themselves. The corresponding
(less demanding) integrability condition would take the form of
a Frobenius condition. In either case we will refer to the form
ω as a layering form.

2.2 Dislocations and currents
From the smooth case we learn two facts: (1) A basic entity to be
analyzed for defectiveness is expressed in terms of a differential
form ω . In the case of a 1-form, the entity is a distribution of
Bravais hyperplanes with their corresponding stacking densities.
(2) The defectiveness of the structure is measured by the exterior
derivative Ω = dω of the form representing the basic entity. It
is natural, therefore, to identify Ω with the dislocation or, in
more general terms, with the imperfection. Notice that different
entities ω may have the same boundary (if they differ by a
closed form), which means that the same dislocation structure
may arise from different physical objects.

The generalization of these notions to the non-smooth case
is straightforward, provided one bears in mind de Rham’s in-
vention. Let a p-current T represent some basic physical object.
Then we call its boundary D = ∂T the associated dislocation
current. Notice that D is a (p−1)-current. We say that the object
represented by T is defect-free if the integrability condition

∂T = 0, (12)

is satisfied. In other words, T is defect-free if it has a vanishing
boundary D = 0. An important non-trivial example is provided
by a p-simplex s embedded in the manifold M . As we have
seen, we can associate to s the current Ts defined in Equation (2).
For the important particular case p = n−1, the current Ts can be
regarded as the specification of a Bravais structure concentrated
on s rather than distributed over the whole body. Physically,
the simplex s may be regarded as a cut inside the body where
a putative layer of atoms has been inserted or removed. Let us
calculate the corresponding dislocation current Ds. For every
compactly supported (p−1)-form φ , we have:

Ds[φ ] = ∂Ts[φ ] = Ts[dφ ] =
∫
s

dφ =
∫
∂ s

φ = T∂ s[φ ]. (13)

Thus, we obtain the important result that the dislocation co-
incides with the current associated with the boundary of the
embedded simplex.

2.3 An edge dislocation
Consider the open cube M = (−1,1)3 in R3 with coordinates
x,y,z. Let h denote its intersection with the (oriented) lower
half-plane x = 0,z≤ 0. We associate with h the current:

Th[φ ] =
∫
h

φ , (14)

where φ denotes an arbitrary compactly supported 2-form in M .
Notice that the supports of these forms must be made entirely
from (interior) points of the open cube. As a consequence of
this observation, we obtain:

Dh[ψ] = ∂Th[ψ] =
∫
h

dψ =
∫
L

ψ = TL[ψ], (15)

where L is the open interval (−1,1) on the y-axis. Thus we
recover the classical textbook description of an edge dislocation
as the result of the removal of an atomic half plane.

2.4 An open book
An interesting example is provided by the 1-form φ = dθ de-
fined in F = R2\{0}, that is, the real plane devoid of the origin.
We denote by ρ,θ the usual polar “coordinates”. Clearly, these
are not legitimate global coordinates for F since (ρ,θ ) and
(ρ,θ +2π) represent the same point. Nevertheless, the notation
dθ is standard and reinforces the fact that the 1-form φ is closed
(namely, dφ = 0) though not exact. If we should propose φ as a
layering form on F , the corresponding distribution would look
like the set of all rays emanating from (but not including) the
origin {0}. The corresponding dislocation form is D = dφ = 0,
which means that, as far as the set F is concerned, the given
layering is defect free. We are interested, however, in extending
the form φ to include the missing origin. To this end, we define
the following associated current on R2:

Tφ [α] =
∫
F

φ ∧α. (16)

The subtle point in this definition is that the 1-forms α have
compact support in R2 rather than in F . We are interested to
obtain the corresponding dislocation current D, that is:

D[β ] = ∂T [β ] = T [dβ ] =
∫
F

φ ∧dβ =
∫
F

d(βφ), (17)

where β is any zero-form (function) with compact support in
R2 and where dφ = 0 was used. Since we cannot use Stokes’
theorem directly, we resort to evaluate the last integral over the
domain Fε obtained by subtracting from R2 the closed ball of
radius ε with centre at the origin and then going to the limit as
ε → 0. We obtain:∫

F

d(βφ) = lim
ε→0

∫
Fε

d(βφ) = lim
ε→0

∫
∂Fε

βφ = 2πβ ({0}). (18)

Thus, the dislocation current is given by Dirac’s delta. To obtain
a three-dimensional version of the above, we consider the same
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form φ = dθ in a cylindrical coordinate system ρ,θ ,z and
define the domain F as R3 minus the entire z-axis. This layering
form can now be pictured as the pages of an open book evenly
spread with the spine occupying the z-axis. The corresponding
dislocation current is now given by:

D[γ] = ∂Tφ [γ] = 2π

∞∫
−∞

γ3(0,0,z)dz, (19)

where γ = γ1dx+ γ2dy+ γ3dz is a 1-form with compact support
in R3.

2.5 A screw dislocation
Two currents that differ by a closed (i.e., zero-boundary) current
have the same boundary. In the context of defects, we may say
that two layering currents that differ by defect-free current must
exhibit exactly the same defects. This observation can have
unexpected physical interpretations. Indeed, let us consider the
open-book layering current Tφ just introduced and let us define
the 2-current:

S = Tφ +aTdz, (20)

where a is a constant. Since dz is a well-defined closed form
over R3, so is the associated current Tdz. Consequently, the
boundary of S coincides with the boundary of Tφ . The layering
structure corresponding to S consist of applying to the previous
‘pages’ a uniform twist about the z-axis. To ascertain that this
is indeed the case, notice that, within the domain F , S can be
regarded as the 1-form φ = dθ +adz, a closed form. Locally,
therefore, we can write:

φ = d(θ +az). (21)

In other words, locally the submanifolds with equation:

θ +az = constant (22)

are integral submanifolds of the distribution generated by φ .
These submanifolds describe helicoidal surfaces climbing around
the z-axis. This screw layering has a dislocation current identical
to that of the open book.

3. Frank’s rules
Within the classical theory of dislocations in crystals, a promi-
nent role is played by the Burgers vector concept. Dislocations
are assumed to occur along lines only. A Burgers circuit in
an atomic lattice consists of a quadrilateral path situated on an
atomic ‘plane’ transverse to the dislocation line and with equal
numbers of atomic cell steps on opposite sides. In a perfect
crystal, these paths naturally close. The lack of closure (namely,
the Burgers vector, denoted by b), on the other hand, is inter-
preted as the presence of a dislocation. When, for example, b
is parallel to the dislocation line, we have a pure screw dislo-
cation. Clearly, as one advances over the dislocation line, the
Burgers vector may change in magnitude and direction, so that
the question arises as to whether this change can be arbitrary.

Moreover, dislocation lines may meet and branch out, so that
a similar question arises in these more involved cases. In an
important article [5], F. C. Frank introduced the notion of the
law of conservation of Burgers vectors, formally analogous to
Kirchhoff’s laws for electrical circuits (charge conservation)
or similar laws for fluid flow in pipes (mass conservation). As
a consequence of this law, several rules can be deduced. For
example, the Burgers vector along a dislocation line must be
constant. Moreover, a dislocation line may not end within the
crystal, but only at its boundary. At a bifurcation, the vector
of the entrant trunk is equal to the sum of the vectors of the
outgoing branches. Given the importance of these rules in ap-
plications, we want to place them rigorously within the context
of the geometrical theory. It will turn out that Frank’s rules
are various expressions of the general topological criterion that
establishes that the boundary operator is nilpotent of degree 2,
that is, the boundary of a boundary necessarily vanishes.

3.1 The constancy rule
Since Frank’s rules deal always with dislocation lines, we need
first to establish the notion of the support of a current [1]. A
current T is equal to zero in an open set U if T [φ ] = 0 for all
smooth forms φ compactly supported in U . The support of
T is defined as the complement of the maximal open set in
which T = 0. Accordingly, we say that a dislocation current
D is a dislocation line if its support is a curve. Considering,
for specificity, a (three-dimensional) body M , we investigate
the possibility of existence of a curve L within the body, whose
ends are not points of M , with the following properties: (1) L
is the support of a dislocation 1-current D; (2) D is of the form
TuL for some real valued function u : M → R, namely:

D[α] =
∫
L

uα, (23)

with some abuse of notation (in the sense that, within the inte-
gral, the 1-form α represents the restriction to L of the original
1-form α with compact support in M ). We will prove that
both conditions cannot be satisfied simultaneously unless the
scalar function u is actually constant on L. The proof starts by
remarking that, as a dislocation current, D must be the boundary
of some (layering) current S:

D = TuL = ∂S. (24)

Applying the boundary operator, we obtain

∂D = ∂TuL = ∂∂S = 0. (25)

Evaluating over a zero-form f yields

∂TuL[ f ] =TuL[d f ] =
∫
L

u f =
∫
L

d(u f )−
∫
L

f du=−
∫
L

f du= 0.

(26)

Since f is arbitrary, we conclude that u= constant on L. Thus, if
we interpret u as the strength of the dislocation, it follows from
this proof that the strength of a line dislocation must be constant.
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Recall that we are analyzing the dislocations associated with
a single layering system, whence the scalar nature of the line
dislocation strength.

3.2 Branching
If k lines (Li, i = 1, ...,k ≥ 3) meet at a body point X ∈M , and
if each line is the support of a line dislocation, we have a case
of branching. We assume these lines to originate at X and to
emerge at the topological boundary of M (which is to be seen,
as standard continuum mechanics prescribes, as an ordinary
differentiable manifold, not as a manifold with boundary). It
follows that the boundary of each of the given lines Li consists
of the single point X . Denoting by ai the (constant) strength
of the dislocation supported by Li, we associate to the total
system the dislocation current D = ∑

i
aiTLi . For an arbitrary

compactly supported zero-form f , considering that D itself
must be a boundary of a (layering) 1-form, we obtain:

0 = ∂D[ f ] = ∑
i

ai

∫
Li

d f = f (X) ∑
i

ai. (27)

Since f is arbitrary, we conclude that:

∑
i

ai = 0, (28)

which is Frank’s branching rule within the scalar context.

4. The second integrability criterion
We indicated in section 2.1 that, given a layering form ω , there
are two different questions that one may try to answer, each one
leading to a different integrability criterion. The first question,
which we have been exclusively addressing so far, is whether
or not the layers and their respective stacking densities fit well
together. The general answer to this question is provided by
the closedness of the layering form, namely dω = 0, or, in the
singular case, the closedness of the layering current, ∂T = 0.
The second question, which we have described only in the case
of a decomposable5 layering form ω , is whether or not the asso-
ciated distribution is completely integrable. According to the
theorem of Frobenius, the pertinent condition is the existence
of a 1-form β such that dω = β ∧ω . Clearly, this criterion of
integrability is less demanding than the first. Correspondingly,
every defect-free decomposable layering form ω according to
the first criterion is also defect-free according to the second,
but the converse is not true. Examples are not difficult to con-
struct. In fact, every 1-form in R3 given by the expression
ω = f (x,y)dx+g(x,y)dy+dz, for any given smooth functions
f and g, gives rise to a completely integrable two-dimensional
distribution, although ω is closed only when the cross deriva-
tives f,y and g,x are identical to each other.

4.1 Coherence at interfaces
Working in R3 with natural coordinates x,y,z, let Σ denote the
plane z = 0. Let, moreover, the upper (z≥ 0) and lower (z < 0)

5Note that 1-forms are always decomposable.

half-spaces be denoted by H+ and H−, respectively. Consider
1-forms f+ = f+1 dx+ f+2 dy+ f+3 dz and f− = f−1 dx+ f−2 dy+
f−3 dz smoothly defined on H+ and H−, respectively, and define
a 2-current T by

T [φ ] =
∫

H+

f+∧φ +
∫

H−

f−∧φ , (29)

for arbitrary 2-forms φ compactly supported in R3. We regard
this form as defining a singular 2-dimensional distribution on
R3. Its boundary is the 1-current:

∂T [ψ] = T [dψ] =
∫

H+

f+∧dψ +
∫

H−

f−∧dψ

=
∫
Σ

[[ f ]]∧ψ +
∫

H+

d f+∧ψ +
∫

H−

d f−∧ψ, (30)

acting on 1-forms ψ with compact support in R3. In this equa-
tion, [[·]] denotes the jump operator. Assume now that, for this
particular layering current T , we want to establish the absence
of defects according to our first criterion. Setting

∂T = 0 (31)

identically, we may first choose arbitrary forms ψ whose support
does not intersect Σ and obtain the conditions:

d f+ = 0, d f− = 0. (32)

What these conditions mean is that, as far as the individual
layering forms f+ and f− are concerned, there are no defects
at interior points of H+ or H− and all possible remaining dis-
locations are concentrated on the surface Σ. Considering now
arbitrary 1-forms ψ whose support does intersect Σ, we obtain
the following extra point-wise conditions on Σ:

[[ f1]] = 0, [[ f2]] = 0. (33)

The jump [[ f3]] of the z-component of the layering form can
be prescribed arbitrarily. The geometric interpretation of these
results can be gathered by first considering the case in which
f+1 , f−1 , f+2 and f−2 vanish altogether while f+3 = A and f−3 = B,
where A and B are different constants. We have then a purely
horizontal layering (i.e., parallel to Σ) that undergoes an abrupt
change of density across Σ. There are no defects in this kind
of layering. On the other hand, if f+1 , f−1 , f+3 and f−3 were
to vanish identically while f+2 = A and f−2 = B, the layering
would be vertical (i.e., perpendicular to Σ) and there would be
an incoherence defect across Σ, unless A = B. In a more general
case. we would have that the layering consists of leaves that
may have a kink upon crossing the surface Σ, but are otherwise
continuous.

We have considered so far the absence of defects according
to the first integrability criterion, namely, by checking that the
layering current T is closed. We investigate now the conse-
quences of demanding only the existence of a 1-form β such
that

∂T = βyT. (34)
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More explicitly,∫
Σ

[[ f ]]∧ψ +
∫

H+

d f+∧ψ +
∫

H−

d f−∧ψ

=
∫

H+

f+∧ (β ∧ψ)+
∫

H−

f−∧ (β ∧ψ). (35)

Considering first 1-forms ψ whose support does not intersect Σ,
we obtain now the conditions

d f+ = f+∧β , d f+ = f+∧β . (36)

In other words, the distributions induced by f+ and f− in the
interior of their respective domains are required only to be
completely integrable. By considering 1-forms ψ whose support
intersects Σ, however, we recover the coherence condition (33).
We observe not only that this condition could perhaps be further
relaxed, but also that, even in terms of the complete integrability
of the upper and lower distributions, a single form β should act
as integrating factor for both. Clearly, a still weaker form of
the Frobenius condition (10) could be postulated in terms of a
current multiplier rather than a smooth form β . This issue is the
subject of further study.

4.2 Broken leaves
We define the 2-current

T [φ ] =
∫
Σ

φ +
∫
R3

α ∧φ , (37)

where Σ is the same as in the previous example and α is a 1-form
defined over R3. Its boundary is:

D[ψ] = ∂T [ψ] =
∫
Σ

dψ +
∫
R3

α ∧dψ =
∫
R3

dα ∧ψ, (38)

for arbitrary 1-forms ψ with compact support in R3. The
stronger integrability criterion ∂T = 0 yields the expected con-
dition

dα = 0. (39)

We note that the integral over Σ is automatically closed as a
current and, consequently, has no effect on the result when
applying the (linear) boundary operator. On the other hand,
demanding only the satisfaction of Equation (10), we conclude
that a 1-form β must exist such that

∂T [ψ] = (βyT )[ψ] =
∫
Σ

β ∧ψ +
∫
R3

α ∧β ∧ψ. (40)

This identity implies:

dα = α ∧β on R3, (41)

and

β = 0 on Σ. (42)

To grasp the meaning of these integrability conditions, we ob-
serve that if we were to ignore the integral over Σ in the defini-
tion of T in Equation (37), the satisfaction of the integrability
condition (41) would imply that the distribution is completely
integrable, thus constituting a regular foliation of R3. The pres-
ence of the integral over Σ has the effect of breaking the leaves.
The vanishing of β repairs the damage. An intuitive realization
of this picture can be obtained by considering the following
sequence of forms:

αi = dy+ cidz, (43)

where ci = ci(z) are scalar functions supported on the interval
[−2−i,2−i] and such that∫

R

cidz = 1. (44)

The sequence of 2-currents

Ti[φ ] =
∫
R3

αi∧φ (45)

approximates a 2-current T whose leaves are of the broken kind
described above.

———————————————————————

Acknowledgments
This work has been supported in part by the Natural Sciences
and Engineering Research Council of Canada.

References
[1] de Rham G. Differentiable Manifolds. Springer, 1984.

[2] Epstein M and Segev R. Geometric aspects of singular
dislocations. Mathematics and Mechanics of Solids, in press.

[3] Kondo K. Geometry of Elastic Deformation and incompati-
bility. Tokyo Gakujutsu Benken Fukyu-Kai, IC, 1955.

[4] Noll W. Materially uniform bodies with inhomogeneities.
Archive for Rational mechanics and Analysis, 27:1–32,
1967.

[5] Frank F C. Crystal dislocations - elementary concepts and
definitions. Philosophical Magazine, 42:809–819, 1951.


