MATHEMATICAL PRELIMINARIES

The purpose of these preliminaries is to introduce the
notation, terminology, and principal mathematical results to
be used in the course of the lectures. These will allow an
easy, uninterrupted development of the physical theory. The
results presented here may be found in greater detail in the
following sources:

Geometric Integration Theory

H. Whitney

Princeton University Press (1957)
Riceci~Calculus

J. A. Schouten

Springer-Verlag (1954)

Finite Dimensional Vector Spaces
P. Halmos

Tensor Fields

J. L. Ericksen

Appendix, Classical Field Theories
Handbuch der Physik, III/1 (1960)




1. COTENSORS

Let VO denote an n-dimensional real vector space. Ele-
ments of v® will be denoted by boldface, lower case Latin
letters, v, 4, ... and will be calléd vectors. A real valued
multilinear (i.e., linear in each argument) function of r vec-
tors is called an r-cotensor. Thus, denoting the real numbers

by R, an r-cotensor is a multilinear mapping

a: V' - R,

where

v v x v X ... XV

is the r-fold Cartesian product of v, Cotensors will be de-
noted by lower case, Greek boldface letters.
The sum of any two cotensors and the product of a cotensor
by a real number are defined by the relations
(g + E)(V’u) = a(v,u) + E(V: u)
(1.1)
(Ae)(w) = Mafw), NeR, ue V.
As in (1. 1), we always denote real numbers by lightface, lower

case Greek or Latin letters. With these definitions, the set of



all r-cotensors is a certain linear space which we denote by

Vv and dim (Vnr) =n'. We call V" the carrier space of

nt’

V .. For r=1, we write Vn and call the elements of Vn,

covectors. The space of covectors is called the conjugate of

y__r_lo More generally, the space of real valued linear functions
of the elements of any linear space L is called the conjugate
space LS.

Let e i=1, 2, ..., n denote a basis (linearly inde-
pendent set of vectors) in the carrier space v™ Then an

s I .
arbitrary vector v ¢ V' has the representation

i i .
VEV en v e R, i=1, 2, s0., 1 (1. 2)
M =

where the components Vi of v with respect to the basis e,
are uniquely determined by v and & As in {1. 2) we use the
summation convention wherein, if the same letter appears in
a given term of an expression in both a superior and inferior
position (not at the same level, however), summation over the
corresponding index set is implied without writing the summation
sign. When the index set is not clear from the context, the sum-~
mation sign will be used.

It is evident that an r-cotensor @ is uniquely determined

by its set of values



a, . o, = . . .
1112. oo i (i) i i ~1

For r=1, the set of covectors 21, i=1l, 2, cosy, n de-
fined by

. 1 if 1= j
ele) = &, = (1.4)
J J 0 if i j

are linearly independent and constitute a basis in the space Vn

of covectors. The sets Si and eJ

~

so related are called reci-
procal bases for V™ and the conjugate space Vn.

Every covector « has the representation

a = a ¢, (1.5)

and if v is represented as in (1. 2), then

aly) = v 2. (1. 6)

r
More generally, now, for r >1, the n r-cotensors

defined by
1 iZ ir
€ ® € ® * o0 @ £ (e I e ¥ o080y € ) =
~ ~ j1 MjZ jJ:'
i DA
51 52 §.° (1.7)




are linearly independent and constitute a basis in Vnr called

the tensor basis of Vnr corresponding to the basis & in the

n :
carrier space V  of Vnr° Every r-cotensor @ has the

represenﬁation
il iz ir
a=a e ® £ ® ... @ g (1.8) -

1112. - lr ~

where the tensor components cx(i) of @ are given by (l. 3).

The tensor product of an r-cotensor @ and an s-cotensor

E is the (r + s)-cotensor & ® EJ defined by

(,%® ’é)(zl,xz;oon’ Zr’ u uz,nouggs) =

Nl’f\l

g(zl’zzgoongxr) E(El’}‘l"z’o‘o’l’ls)‘ (1o 9)

Vad

The tensor components of « B are given in terms of the
P L g

tensor components of @ and B by
~ no

€ ® 8 ; j - Y

. . B . +(1.10)
pigees i 3152““32

pigees i, jljz. e edg



2, TENSORS AND MIXED TENSORS

A multilinear real valued function

where

v = V. XV X... V
n n

Fay el n

is the r-fold Cartesian product of Vn, is called an r-tensor, ¥

All that has been said in §1 can now be repeated with the roles
of V' and Vn interchanged and with obvious changes in the
terminology. In particular, every r-tensor T has the repre-

sentation

(1)

where the tensor components T of ,’E are given by

1.i,.001 i i i
2 2
Tl r=T(el, E 5, eoes er). (2. 2)
S\~ ~

The tensor product T @ S of an r-tensor and an s-tensor is
defined in obvious analogy to the tensor product of r-cotensors.

The set of all r-tensors with addition and multiplication by

In tensor analysis, it is common to call an r-tensor a tensor
of rank r. But we shall use the term rank of a tensor in an
entirely different sense below} hence, we avoid the common

terminology here.



scalars defined by

(E+§)(g’l’g2’” -,gr) = I(gl’gZ’;"”gr) +,§(gl,32, -.oxgr)

(2. 3)
(XE)('(\XJ].’ 32’.°"gr) = )&ATJ(gl’gzgoao,gr)

r
: n . r
is a linear space V of dimension n .

By definition, (Vn)c = Vn; i. e., the space of covectors
is the conjugate of the space of vectors. The conjugate (Vn)C

of the space of covectors is, by definition, what we have called
the space of 1-tensors ano Now V', the carrier space, has
the same dimension as an; hence, they are isomorphic. The
natural isomorphism ¢: V. — Vnl is defined by

s = g = ey (2.9

It is customary to denote g(x) and v by the same letter and
not to distinguish between vectors and l-tensors whose carrier
space v? is the corresponding space of vectors. We adopt
this convention here, but the natural isomorphism and all these
agreements should be kept in mind. More generally now, the
conjugate space (Vnr)c of the space of r-cotensors has the

r

: . n
same dimension as the space V of r-tensors and, hence,

they are isomorphic, but distinct. The natural isomorphism




T
(0] vt (er)C is defined as follows. Call an r~tensor E

simple if it is the tensor product of r-vectorsy T = Y1 ® Y, ®

cee @ v Define g(g) for every simple r-covector by

g('D = g(xl ® Vo ® ... ®/Yr) ,: “(Xl’Xz"°°',§,’r) (2. 5)
and set

2( T +nS) = )“g(:lv‘) +'T]%(§) (2. 6)

if E and S are simple, but T+S not necessarily simple.
But every r-tensor T is the sum of a finite number of simple
r-tensors (cf., the representation (2.1)). Hence, (2.5) and
(2.6) define o(T) for arbitrary T e Vnr., The natural isomor-

T
phism between v®  and (Vnr)C is then defined by

a(T)(2) = «T). | (2.7)

Here, as in the case of vectors and 1-tensors, itis conventional
not to distinguish between ''co-cotensors' E(E) and the tensor
E related by the natural isomorphism established by (2. 7).
Thus, %(',I‘v) and ’E are denoted by the common symbol :.5, and

il‘lz.o..ir
T(a) = (T) = a, s T , (2. 8)
~oAnJ Lo 1 i. 000 d
172 T



where o, and T(l) are the components of @ and T, with
(i) ~ v ~
respect to arbitrary tensor bases in Vnr and V° .

More generally, now, a real valued multilinear function

n

n nz
XV, x,,.xvrr—»R (2.9)

1

1\’5: V1

of r vector arguments drawn from an arbitrary collection of

r vector spaces is called a mixed r-tensor unless Vl = VZ =
© v o V 2
r

It suffices to illustrate the general case by the case r = 2,

Then

M: VXU > R,

7t

say. Let e, and Ea’ i=1, 2, oo, n, @=1, 2, c0., m Dbe

i

bases in V'~ and U™, respectively. Then, M is uniquely
o

determined by its components

M, = Mle, E). (2.10)

Let IX,I + If\IJ and )"I\,LI be defined by

(M +N){(v, u) = My, u) + N(v; u),
o ~ ~ (2.11)
M)y, w) = M(v,u).

~ e N

Then, the set of all such mixed tensors is a linear space Wmn



of dimension mn. A basis in Wmn consists in the mn ele-

ments defined by

(¢4

i To i
) = 8,6, 2.12
(5, ® & (epngg) = 858, (2.12)
and an arbitrary M ¢ Wmn has the representation
= i o
M= M, f ® 8 (2.13)

where the components of M, the Mioz’ are given by (2.10).
Consider the special case of the above where v?= Um,

the conjugate space of the second argument U™. Then,
M: U_ XU >R
~ m

and we set

(64
Mg = M(é, Eg) (2. 14)

where the Sa and E, are reciprocal, Ea((SB) = 65. Thus,

I\../;I = MQB Ea ® gﬁ, (2. 15)

Every such mixed tensor M determines a unique linear trans-

formation

defined as follows:

LO



/e

* _
M) = My
% c . . m
where M™(u) e (Um) is that unique element of U~ deter-
~J o

mined by the natural isomorphism ¢ (cf., 2.4). With respect

to tensor bases in Urn and Um

#
M = M“B,
where

M = 00 (5)

are the components of 1\/‘4*. In a similar way, the mixed tensor
R %
M determines a linear transformation M U —-U de~
~ ~ m m
sk
fined by M (a¥(v) = M(g, v) and the tensor components of

T . ¥y Bk a2
M defined by M g %B(hﬁ@ (g }) are also equal, re-
a
spectively, to the components M 8 of M. These definitions
justify and are consistent with the usual rules and conventions
of tensor algebra. There, itis traditional not to distinguish
x ¥k
between M, % , and M and to denote all three by the com-
mon symbol 1\,§° In the following we shall use absolute notations
or the kernel index notations of tensor algebra interchangeably
according to whichever seems most efficient and expressive in

a given context. By the components of tensors, cotensors, or

mixed tensors we shall always mean tensor components as




/2

these have been defined above. In the physical applications, a
mixed tensor, r-tensor, or r-cotensor is generally introduced
into the physical theory with a specific logical meaning; e. g.,
as a l-tensor and not a vector, or as a linear transformation
of some vector épace, and not as a mixed tensor, but then the
natural isomorphism established above is used freely to

define other operations in which the mixed tensor, r-tensor, or

r-cotensor plays a different logical role,



(3

3. THE SYMMETRY PARTS OF TENSORS AND COTENSORS

Let L. bea nonsingular linear transformation
L: Vn - Vn (39 ].)

. n .
of an n-dimensional vector space V . Then L induces a
~

linear tensor transformation

(3. 2)

in the space Vnr of r-cotensors having v" as carrier space.

The transformation Er is defined by

(’I‘_)Jra)(gjvl, ’I\JJVZ, PRE] '%Vr) = g(zlsxzxtooﬁxr)o (3‘ 3)

If

L (o) = ¢ (3. 4)

~oT A

then @ is said to be invariant under the tensor transformation
~

%r., More generally, let uC Vnr be a proper subspace of

Vv Then if

nt’
,I\—;r(U) Cu (3. 5)

for every L in some set { L } of tensor transformations,
r ~r

then U 1is an invariant subspace under the set of transforma-

tions { Lr}.,
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Consider the symmetric (permutation) group s* on the

123 ...r

T, M T ees T

123 T
terms of an arbitrary r-cotensor o we define the r-cotensor

first r integers and let 1= ( )e s'. Then, in

I{a) by

na(v ’Xz)ﬂﬂllzr) = a(V ,Xﬂ_ ’n°°,,Y/‘]T )o (30 6)

nt e o ~ 7 2 r
The r-cotensor Il is called an isomer of «. Defining

(e +f) = @) + I(B), T(he) = M), (3.7)
every permutation II e s* determines a linear transformation

11 g o .
Io: v V or (3. 8)

nt

It is easy to see that every linear transformation II de-
fined in this way commutes with every tensor transformation
L s
~r

IL (@) = L T{a). (3.9)

A~ AT ~p A~

1
More generally, now, consider the enveloping algebra AT
of the symmetric group s*, Define the transformations I+,

and AL in V_, by

(@ = Do+ 96 (Do =M (310



I
Then, each element of AT, say,

r!
A= » 2°m, I es” (3.11)
~ s=1 s s

determines a linear transformation of Vnr, defined by the

above and

T
Ala) = a 1 (N). (3.12)
~ s=1

The algebra Arl possesses a resolution of its identity

element I,
~

iz :\J'Jl +£2+uoo +,§JP, (3013)

where each J

K’ k=1, 2, ..., p is idempotent and irreducible

and such that

=3, 3.3 h =+ k. (3. 14)

I T Sxeh 0=1J

bl
Irreducible means that there exists no decomposition of any

T intoa sum J. = A+ B such that A and B are idempotent
and AB = BA = 0. From the existence of the resolution of the

identity (3. 13) it follows that every r-cotensor @ can be re-

solved into symmetry parts & = NJk(g) as follows:

3.2= (3. 15)



and one has

Jle ) =8, . (3.16)

i Jae=a «a is said to have symmetry {k}. The sum g)-{-B

k
and product M@ of r-cotensors of symmetry {k} are r-co-

tensors of the same symmetry class {k}. Hence, Vnr is

resolved as follows:

2
V.=V, @V

n nt

NI (3.17)

into a direct sum of subspaces of r-cotensors of given sym-
metry. (Some of these subspaces may be empty; i.e., may
have dimension 0.)
It follows from the commutativity property (3.9) that the
b Vk £ £ o . .
subspaces ar of r-cotensors of given symmetry are invari-

ant subspaces of every tensor transformation Lr of V_ .
~ n

k
%r(vnr) - r%rt{k(vnr) - ,;J:k,I:,‘r(Vnr)

or

k k

Theorem: (Weyl) The resolution (3.17) of an' into a direct
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sum of invariant subspaces of r-cotensors of given symmetry

is a maximal decomposition of Vnr under the set of all tensor

transformations {Ali'r} induced in V . by the set of all non-
singular linear transformations {],':j} of V%, In other words,
if {%} is the set of all nonsingular linear transformations of
v? and {fldr} the corresponding set of tensor transformations
induced in Vnr’ then no proper subspace of any Vir, k =
1, 2, eoo, p is invariant under the set {L"r}

If r>1, the number p(r) of symmetry classes {k} is

always > 2. Amongst these p symmetry classes for every

value of r > 1 is the class of symmetric r-cotensors for which

. r
I = a, for every permutation II e S
~ AJ ~ ~

and the class of antisymmetric r-cotensors for which

Ia = « for every even permutation II,
~ A ~ ~
Ia = -a for every odd permutation I
~nJ ~ ~

For brevity, antisymmetric r-cotensors are called

r-covectors. The subspaces of symmetric and antisymmetric

r-cotensors are denoted by the special symbols V(nr) and

V[ nT]’ respectively. For r = 2, the resolution (3.17) reduces



[&

to the familiar decomposition
Vnz = V(nz) P V[nZ] (3'18)

of 2-cotensors into their symmetric and antisymmetric parts.

But for r > 2,

Vnr = V(nr) & V[nr] @ U,

where, in general, U is not empty.

If ai i ; are the components of an r~cotensor with
172" " 'r

. i
respect to some basis e, we denote the components of the

symmetric and antisymmetric parts of a by a(i ; i) and
1 200. r
ai TR respectively.
172 r
a(, ) iy (/) £ «a, i .
1112010 T HeSr 111' T ocolTr
1 2 T
o
a =(1/4!) = () " e
idi ... ) i i ...’

172 T Ile ST m

where o= 0,1 for even and odd permutations, respectively.
All that has been said above for r-cotensors holds with

minor changes for r-tensors, perhaps with one exception. If

L is a linear transformation of the carrier space v", then the

r
. n
linear tensor transformation of the space of r-tensors V



7

induced by L 1is defined by

iie.od
r 172
LTy =T "lLe )® (Le, ... @ (Le, ) (3.19)
~ ~ Al ~ e~ ~ Al
1 2 T
where
;O A |
2
T=r1! Qe 8...0 e, .
1 2 r

The definitions of nI_)lr (3. 3) and Er (3.19) imply that

o

(

Rl

= I(2) (3. 20)

where T = L°(T) and @ = L (@), provided that L is non-
A~ ~ ~ ~J ~T A ~

singular so that rl~7r is defined. The subspaces of antisym-

[n]

metric and symmetric r-tensors are denoted by V and

r
V(n ), respectively. For brevity, we call antisymmetric

r-tensors, r=-vectors.
k .
If T  is a tensor of symmetry class {x} and @, 2

cotensor of symmetry class {h}, then

Tk(a
~nJ

Nh) = 0 if {k} =# {n}. (3. 21)

It follows that

T(@) = &(T) = = T (3. 22)

a )
fk}~ "k



)0

4, THE GRASSMAN ALGEBRA
Let V" be an n-dimensional vector space and consider

the direct sum (Grassman space)

G= V[1] ® V[n] ® V[nz] D .- D V[nn](4. 1)

of the spaces of r-covectors, r=0,1,2,...,n having the
common carrier space V™. The space V[ 1] is the space of

scalars, and V[ n] = Vn is the space of covectors. Then

dim (G) = 1 +n+(§)+(§)= 1+1)%= 2% (4.2

Let gr and Bs be an r-covector and an s-covector,
respectively, and let J[r] be the idempotent linear trans-
formation (antisymm etrizer) that projects Vn

r into V[nr]:

I Var) = Viarp (4. 3)

The exterior (Grassman) product S'rV Bs is the (r+s)-covector

defined by
_{rt+s)!
grv Es T orl st ~[r+s](grv Es)' (4. 4)

In words, the exterior product of an r-covector and an s-co-

vector is the antisymmetric part of their tensor product times



the numerical factor (r+s)/r!s!. From the associativity of

the tensor product and the property

® 8= 31461912 © Ja1P

3 [ r+s] (gr o ~
it follows that
VigVy) = @Vp)V
Zr (Es .\\it) (2, Es) St (4. 5)
so that the exterior product defined by (4. 4) is associative, but

_ rs
a VB = (7B Va. (4. 6)

~B ~8

A].SO’ grv (Es + :{‘S) = 0 v B + o V 'YS, and Srv (XES) =

~T &8 ~T ~

(ha )V B = ne V B . Thus, if @=(;,@,...,q ) and

B= (B, B secerB ) are any two elements of the Grassman
~ ~0" 2l ~T
space G and we define their product by

aV[i: (248, = avg, = ng,,a”,

~ ~
r+s=1 r s r+s=2 r s

zaV By » (4. 7)
r+s=n

then the bilinear mapping I't GX G ~G with (e, f) = aV B

~ st

determines the linear associative Grassman algebra (,]3, Q).

A corresponding algebra is defined in the same way in the space

o\



R R IR R ) AR L (4. 8)

which we denote by (T, GC). Since G° 1is the conjugate of G,

if ¢ e G and ve GC, v(e) is defined and given by
S "N ~onJ

n
T
vig)=alv) = Z & (v)), (4. 9)
r=0
where
a=a. ® a @ Da = v -
~  ~0 ~1 nes ~n’ 2~Y4®°° ®v, -

. n .
A set of vectors (covectors) v,;V,s...,Vv_ in V  is
~lT 2 ~T
linearly independent if and only if the r-vector (covector)

v Vy V...Vv is different from zero.
n.)]. ~2 ~T

r
An r-vector w_ ¢ V[rl ] is simple if and only if there

~T

exists a set of r-vectors v.,V.:...,V_ such that w_=
~l "'Z ~T

VoV...V
Vit Vo e Ty

If w is an r-vector and v, a vector, then v 1is a divisor
~ ) ot

of w if and only if wVv = wWw = 0. Itis known that v is
A~ A~ A A ~
a divisor of w if and only if there exists an (r-1)-vector u

such that w = uV Ve
~ ~

Let @ be any r-cotensor. Then with respect to each argu-

(r-1)

ment of @, say the pth, there is a set of n covectors
(p) .
gi i \ defined by

1 zauolr-’l

272,



lznovr 1 2 p—l p+l r

(4. 10)

g @ basis. The number of linearly independent covectors in

this set is called the pth rank of g&. ’The pth rank of r-tensors
and of general mixed tensors is defined in the obvious analog-
ous way. Every rank of an r-covector or of an r-vector has
one and the same value, which is called simply its rank. The
rank of a 2-covector (2-tensor) is always an even number. If
2s 1is the rank of the r-covector 2, then ¢ is expressible

as the sum of s simple 2-covectors:

= Vv \ N V i = o
aQ El Yy +/€ Y + .. +,§S Yo if rank (@) = 2s, (4 11)

where the BP, vs p=1,2,...,5 are linearly independent.
nt

~P

Thus, if the B ,y are the first 2s elements of a basis in

~p ~p

n
V', the matrix of components of & with respect to such a
nt

basis has the values

Ilaijll = diag (Q o.. @ 0, 0, ... 0), (4. 12)
. \ 01
where Q is the 2X 2 matnx“ 21 0“ .

r (]
If a is an r-covector and vy, an r-vector, their scalar
r R———————
T T ] )
roduct ¢ + v =v - o is defined b
v
SV ), ~ ~ ~T

a -y o= (1/r1)5r(§)° (4. 13)

~r



The interior product of an (r+s)-covector and an s-vector

is then defined by

(a

~T+s

AT =g, (V) foratl w414

The interior product of an (r+s)-vector and an s-covector

is defined by

r+s rts
(v A @ Y- B v (ErV Ss)’ for all Er° (4. 15)

NS ~T




5. DUALITY

Let S)# 0 be an arbitrary n-covector with carrier space
v, Every n-covector with an n-dimensional carrier space is
simple} therefore, there exists a linearly independent set of

i,
covectors e, i=1,2,...,n such that
~J

=e1Ve2Va..Ven, (5. 1)

e
~t ~ ~ ~

Let E denote the corresponding n-vector defined by the reci-

procal set & of vectors:

E=£1V eZV“'VSn" (5. 2)

" "t
If the e, are the basis vectors in Vn, then the corresponding

tensor components of e and l::i given by

P T | i i i
El2 n‘:E(e l,ez,o“,en),
"o ~ ~
(5. 3)
e, . =ele, ;e ,.009€ )
1112...in L el in
12,..n
have the values E = +1, 7 n: +1. The value of

every other component of E and e is determined by the values

of these two components and the antisymmetry of E and e.
iiyeeei
The components E and i ...1 are called the
172 n
permutation symbols. Note that every linearly independent set

<3



of vectors e, (l.e., every basis) determines a corresponding

i
and e. These should perhaps be distinguished by writing

oty

W W™

(i) and f’,(i) to indicate their dependence on the basis &
The components of a given g(i), s(i) with respect to another
basis 8y say do not, in general, have the values given by
the permutation symbols (5. 3). Rather, they are determined

by the general relations

E(i") = (det §) E(i),
1 (5. 4)
e(i) = (det 8) " efd),

i R . . . .
where S it is the matrix which defines the Si' as a linear

combination of the set e,:
~i
e,, = S €,0 (50 5)

It follows that the mixed tensor § = E(i) @ S(i) is independent
1
of i. The mixed tensor T 6 so defined is the identity trans-
n n
V[n 1. V[n ] More generally, the identity

r r
transformation (1/rl) 6r: v® - V7  has tensor components

1
formation —— 6:
r!l ~

with respect to an arbitrary basis & in V" given by

1112....1r 1112,an1rk1°,,kn_r
5, = (1/n=-7)1)E e. . K K
Jljz.oojr Jl‘]Z'”jr e

(5. 6)

n-r

<6



|
|
|

where % and e are the n-vector and n-covector defined in
terms of an arbitrary linearly independent set of vectors.

Formulas like (5. 6) point up the need for a more efficient
and condensed notation when dealing with components of r-
vectors and r-covectors. For

""" idi...d
eoe 172 r

where ¢ is antisymmetric in the indices ilo - ir, let us

write a’° and for the contracted product such as occurs

,,:(i)’

in (5. 6), let us write

(1/r!)ao¢-ii i Bcoolllzunclrzaooo(i) B""(l) (507)
0951209.1‘ ® ¢ 0 ¢ Qo @ o & ©

where @ and B are general mixed tensors. Thus, for example,
~t ~S

the scalar product defined in (4. 13) is given, in the condensed

notation, in terms of components by

T r(i)
T ar(i) Voo

and, more briefly, by oz(i)v(l), when the value of r is clear

from the context or unimportant for the meaning of the term.

For each choice of e and 1:3\) we can show that the map-

pings

&'l



(5. 8)
D V[nr] -V
defined by
D(vr) = e l\vr,
~Jt ~ o~
(5. 9)
D{a ) = EAa,
~t AT ~ ~
have the property
DD = gr = D' D. (5.10)
-~ ~ ~nJ

Thus, B and E' are 1-1 and onto. E\Lr is called the dual of

@ . It must be kept in mind
~T

v’ and D'@_ is called the dual of
that the duality isomorphism between 'ghe spaces of r-vectors

and (n-r)-covectors established by D and D' depends on the
choice of basis used to define ZE_)/ and e. Because of the rela-

tions (5.4), two bases e, and e determine different isomor-
~t ~

phisms unless e and e, are related by a transformation

i
with determinant +1j i.e., by a unimodular transformation.

The interior and exterior products of r-covectors and r-
vectors introduced above and the duality mappings based on an
n-vector and n-covector are related to the classical cross prod-

uct of Gibbs' vector analysis in the following way:

Definition of cross product:

= DYaV B)

= RDlevy-

g 2R

X
X

¢

1S

/

<



6. QUADRATIC FORMS

A 2-cotensor

g: VEX VY >R (6.1)

is szmmetric if
g(;f)"}) = glu, 1/'))' (6° 2)

A symmetric 2-cotensor is called a quadratic form. Its rank

with respect to either argument has a common value called the

rank of g. If the rank is n, g is nonsingular; otherwise,

g is singular. If g(v,v) >0 (<0) forall x#’Oe Vn,g is posi~-
T ~ oA - g

tive (negative) definite} otherwise, g is indefinite. A basis

~1

e, can always be found such that gij = g(ei, ej) =
diag (1, 1,.5+5~1,-1,...0,0). The diagonal matrix defined by
g in this way is called the signature of g. It is also called the

~

canonical form of the matrix of components gij°

If g is nonsingular, then the mapping (cf., the discussion

~
in §2)
% 0
’g\) A" Vn (6. 3)
defined by
% .
g (v){w) = glv,w) (6. 4)
A~ o~ ~

is 1-1 and onto. In physical theories and in Riemannian geometry

29
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where a particular nonsingular quadratic form g plays a

~

central and dominant role, it is customary to identify the

elements v ¢ v" and their images g (v) under g , and
~ o~

~t

to regard them merely as different representations of the

Wgame™ vector. Here we shall denote the covector g (v)

P
by vT and the vector g*‘\l(a) by aT . Also, while it is
~ ~

~ ~t

customary to denote the components of the inverse of g;}< by

~
af *_1 T .
g =, we shall denote g ~! by g andits components by

~ ~
gTaﬁ )
These are special case of the general rules of tensor
notation concerning the “raising and lowering' of indices by
transvection with a fundamental symmetric, nonsingular

2-cotensor and its inverse. More generally now, "raising"

all the indices of an r-covector defines an isomorphism
[T
n
g's V[nr] - VL ] (6. 5)

defined by

T iigeoein _  Tiyjy Tinj Tij
al 12 r= g 131g ZJZOMg rJr

Q

Jdye e g6 6)

T= g*(‘l) s

a
~ ~ nI
and "lowering' all the indices of an r-vector defines the in-

verse transformation



*-1, [nr} _ (6.7)

g VvV V[nr], .
and one has

1= gl =y (6-8)

. . . n .
Every non-singular quadratic form in V  determines
r

such an isomorphism between the spaces V[r1 ] and V[nr] o

The isomorphisms g’l'< determined in this way by different
r

quadratic forms are distinct, as are the duality transformations
B(i) and ‘E(ii') determined by linearly independent sets e, and
~

& not related by a unimodular transformation.

Let

iiesodl Jjaeoed
12 12
g = (L/nl)E "B ng'°°°gi'(6 9)
1 nln'®

denote the determinant of the quadratic form g. Note that
the value of the determinant depends on the basis used to de~-
fine E.

~

Two ordered linearly independent sets of vectors v, and

~1

. n . . .o
v in V'~ are said to have the same orientation if they are
o

related by a transformation with positive determinant; other-
wise, they are said to have opposite orientation. A V" to-

gether with an ordered linearly independent set of vectors in

s . . . on n
it is an oriented n-dimensional vector space V . (V, v, )
~i



n on
and ( V , vi‘ ) determine the same V provided vi and
~o o
Vit have the same orientation; otherwise, they are regarded
o
-
n
as different oriented Vn, say v® and V.

-

. n
Consider now a V  and set

D= (¢V{g]) Dli) (6. 10)
where € = +1 if the set Si used to define the dual transforma-=
tion has the same orientation as Vn and € = -1 otherwise.

This definition of D is independent of the basis used to de-

fine D(i). One then has
~J

= (fle-rh g gl T (6.11)

— [ ~T

e}

#-1

~T

Qo
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7. CHAINS AND COCHAINS
Let A" denote an n-dimensional affine space with trans-
\ n
lations V. We call elements of V" vectors and the elements
of A" points. Points are denoted by lightface, lower-case

Latin letters ps q, ..., etc. We write

vip)=ptvy,

for the image of p under the translation v, and
v=p-4

for the unique element of v? defined by the pair of points

(p> @) We say that the vector v points from q to p.

An oriented r-simplex sr(: A" is determined by giving

an ordered set of r+l points [poplpz, - Pr] called the ver-
tices of s .. The simplex 5. consists in the set of points p

given by

T
i
= p2 s < < .- P. - 3 Te
o) p0+i:1azi 0<a <1, v P, ~ Py (7. 1)

and it is assumed that the vectors {vi} are linearly independent.
The orientation of 5. is given by the orientation of the set of

r-vectors {Xl}

The r~vector s of s _ is defined by
e T r



1
= e— e s 0 @ 02
s A} VXZ\/ er (7. 2)

~NT

n . "
A Euclidean space E is an affine space with a positive

definite quadratic form q(u,v) 1in the translation space v?

of E.

The r-direction dr of an r-simplex srC E" is defined by

]
Sr” |5, 1 ’ I’s"rl - ﬂ-r(f.r’,?,r)’ (7.3)

r
where q. is the quadratic form in V[n ] whose definition

~

has been given in §5. We call If’;rl , the r-volume of S .

q
The center P, of an r-simplex (6. 1) is the point defined by

1 T
Pc ™ P * (r + 1) i—zl Y (7. 4)

An r-cube trC A" is the set of points given by

T .
p=p.+ T av, O0<a <I, (7. 5)
0 - M

where the r vectors v, are linearly independent, and the

orientation of tr is the orientation determined by the set of

1
r vectors {Vi}° The point P, = Py + EZ v, in (7.5) is the

center of t . Therwvector of t is t =v.V v.V...Vv,
e T T ~wr  ~1 A2 ~T

=4



!
x
!
!

its r-direction is d = and lt l is its r-volume.
~T ~T )

q
' n ., . R . ..
An r-chain cr ( A" is a linear combination of a finite

'31'/ I«Er |
q
number of nonoverlapping r-simplexes S .ot 47 1,2,... with
real coefficients. Two r-simplexes . and c'r are non-
overlapping if crm c; is the empty set of points in An, or
the points of an s~simplex, s <r. By 0 5. is meant the
empty set of points; by -1 s, is meant the simplex comprising
the same set of points as the simplex s . but with opposite

. . o o
orientation. If ¢ = 2 ¢ 8 , and ¢! = Zc¢t s o are two

ro g ro r g T
r-chains in A", we define )».cr + nc:'r as the r-chain
o o . ) n
Z{(hc +mnc! )sra so that the set Cr of all r-chains in A
o
is a linear space.

An r-cochain F is a real-valued linear function,

I Cr -+ R, of r-chains.



8. COCHAINS DEFINED BY INTEGRATION OF r-COVECTOR
FIELDS

Let A" be an affine space with translations V™. A tensor

field in A" is a mapping T: A™ > V which assigns to each

n . . .
point pe A a tensor E(p) in a tensor space V with carrier
space Vo,

Let q be an arbitrary positive definite quadratic form in

n _ : .
V" so that lIlq and ]p—qlq = g(z), Yv)’ v = p-q define certain
norms in V and A", respectively, in terms of which we may
define the continuity of a tensor field T. If T is continuous
with respect to the norm | Iq’ then it is continuous with re-~

spect to any other norm | |q', defined in this way. We say

this to emphasize that the considerations of this section are

independent of the choice of the positive definite quadratic form q. .

Set

T(p + tv) - Tp) ;
t

VT(p,v) = lim
~ t~0+

then, if the limit exists, VT is linear in v and hence is a ten-
~
sor with carrier space Vn; we denote it by VT(p) and call it
the gradient of T at the point p. If VT(p) is defined for each
n . . . n n
pe A7, then VT is a tensor fieldin A", Let RC A" bea

region of A™, If T is continuous at each point p e R, we say

3¢
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that the field T 1is continuous in R. If VT exists and is con-
tinuous at each point p € R, we say that T is l-smooth or
smooth in R. If VVT exists and is continuous in R, we say
that VT 1is 2~smooth in R. Proceeding in this way, we de-~

. . . . n
fine r-smooth tensor fields in regions R of A,

An r-covector field in A is a special case

ot AT = Vo] (8.1)
of a tensor field defined more generally above. For brevity,
we shall call an r-covector field in An, an r-form in A"

The integral of an r~form over an r-chain,

F(cr, @) = 5 ® : (8..2)

C
r

is defined as follows. First of all, we set

o a
F(Cr’ ¢)—F(Za S o (p) = Za S; @, (8. 3)

o [0}
ro

so that it suffices to define the integral of ¢ over an r-simplex
8 e Now for every value of ¢ >0 an r-simplex s, can be

(subdivided) expressedas an r-chain of the form
N(e)
s = X s
T g rp



S8

where each SrB has the same r~direction as s and
diam q(srB) < ¢ diam q(sr), (g arbitrary). Let Sl’ SZ’ coe
be any sequence of such subdivisions of s such that €1 - 0.

For the subdivision Sk’ let Prp be the center of the simplex

SrBB
N

k
o= lim Z @p, o) * S _pe (8. 4)
S;r koo po1 WP TP

An elegant proof that the limit (8.4) exists and is inde-
pendent of the sequence Sl’ SZ’ ... if ¢ is continuous in p
is given by Whitney. It follows from the definitions (8. 2) and
(8. 4) that every continuous r-form in A" determines a unique
r-cochain F and that F(a¢ + be') = aF(¢) + bF(¢'). A co-

chain defined in this way is called a continuous r-cochain. If

the r-form ¢ is s=-smooth, then F is s-smooth.
A continuous r-form ¢ in RC A" is called regular in R
if there exists a continuous (r+l)-form rot ¢ such that, for

every simplex S a1 CR

? ¢ = 5; rot ¢, (8. 5)

*9
el r+l
where Bsr+1 denotes the boundary of the simplex S.1 oriented



as follows: If sS4 has vertices [popl. oo Pr+1]’ then S.41
is the r-chain given by the sum of r-simplexes

r+l

t A
- Z - o 0 e 3 v o8 3 F) 06
9% 41 t"O( ) s (PoPye e Pryrog Ppyy) (8:0)

where Sr(P0p1° .o ']\?r+l IEEREE Pr+1) denotes the simplex with
ordered vertices PoP1e°* Pryl with Proyy ¢ omitted.

With these definitions, the famous theorems of Gauss,
Stokes, Kelvin, Poincaré, and others may be viewed as a spe-
cial case of the

n
Divergence theorem: Every smooth r-form ¢ in R CA

is a regular r-form in Rj; moreover, for smooth ¢,

rot =08V o= (r +1) Jr+l(v¢)° (8. 7)

A proof of the divergence theorem is not difficult for sim-
plexes and chains. Later, we shall consider r-forms in a
smooth manifold, and the definition of §¢ will be extended to
smooth manifolds and smooth manifolds embedded in a smooth
manifold. In this way we get a quick proof of the divergence
theorem for a much wider class of regions in A",

A regular r-form ¢ 1is closed (irrotational) in R if

rot ¢ = 0. Thus, in other words, an r-form ¢ is irrotational



in R if and only if the continuous r-chain F(¢) has the

property

F(Bsr+1,cp)= S o = 0 every Sr+1C R.

asr+1

An r-form ¢ is circulation free in R if there exists a

a regular (r-1)-form w such that, throughout R, ¢ = rot
The r-form ™ is called a potential of the circulation free
r-form ¢. Every circulation free r-form in an arbitrary
region R C A" is irrotational,

S Q= S (rot m) = S ™= 0, (8. 8)

oc oc 00c
T T

where we have used the property 88cr = 0 of the boundary
operator 9. But it is not true that every irrotational r~-form
¢ in an arbitrary region R is circulation free. (Let R be
the annulus p = Py tv, a< i\’d <b, 2>0, b>0, in Eizand
let ¢ be the l-form with components ’(0, 1) in every polar
coordinate system for which Py is the origin.) Whitney has
shown, however, that every irrotational r-form ¢ in a star-
shaped region R A" is circulation free in An, and he has

given an explicit construction of a potential 7 for ¢ in R.



The potential m of a circulation free r-form ¢ is not unique.

Clearly, if the r-form ¢ = rot 7 in R, then ¢ = rot ™ in R

also where w'= 7 4 rot y where vy is any regular (r-2)-form.



9, CONTINUOUS r-COVECTOR FIELDS DEFINED BY CER-
TAIN r~COCHAINS

In the previous section, the continuous r~cochain F(¢)
was defined for evéry continuous r-form ¢ in A", In this
section, it will be shown how every r-cochain F of a certain
class determines a unique r-form ¢(F). The characterization
of this class of cochains and the proof of the existence of ¢{(F)
are due to Whitney. I shall sketch here in some detail Whit-
ney's work, for I feel that it has wide applications in continuum
mechanics. A very special case of Whitney's theorem to be
discussed below will be recognized by experts in continuum
mechanics as a new and novel approach to the concept of
stress and the existence of a stress tensor. In classical field
theories, r-forms represent the most basic and primitive
physical quantities. The electromagnetic field, the gravita-
tional field, the charge and current fields, and the stress ten-
sor {(a vector-valued 2-form) are familiar examples. But the
concept of a field (r-form) is sophisticated indeed (except,
perhaps, a O-form) for it carries with it the rather complicated
notion of its r-direction at each point. I believe that the con-
cept of a real valued linear function of r-simplexes or r-chains

lies closer to physical intuition than the concept of an r-form.

Yo



Therefore, in the part of these lectures which concerns physi-
cal theory, the definitions of the basic physical quantities to
occur will be given in terms of the values of r-cochains. To
make contact with the more traditional view which introduces
the gravitational field of force or the electromagnetic field as
primitives we shall need the following results.

An r-cochain F: Cr - R is semi-sharp if

(a) For each bounded region R C An, there exists an

NR such that

IFs )| < N s,

(b) For each point p ¢ A™ and ¢ >0 there existsa
such that for any (r+l)-simplex .41 contained in the r-cube

Ug(p) of diameter ¢ and center p,

|F(8s

r+1) l f- ¢ |'§r+1 lq'

(c) One may choose ¢ in (b) such that for any r-simplex

5. and vector V€ vt (the translation space of An)

‘F(szr— s )| < els, | i s C UL Il <e

In (c) Tvsr is the simplex consisting in the set of points of s,

~

translated by v and having the same orientation as 5 -
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Theorem (Whitney): If F is a semi-sharp r-cochain,

there exists a continuous r-covector field ¢ such that

F(cr) = S\ .

In other words, every semi-sharp r-cochain is a continu-
ous r-cochain.
The proof of the theorem rests in part on the following

Lemma (Whitney): Let ¢ be a real valued function of

simple r-vectors such that

(1} ¢ is homogeneous of degree one:

_ eV oo VY
(p(axr) a‘/)(xr)i XI‘ Y)]_ Xz o 00 v

r+l
2y Z = 0, - gi .
(2) o qo(grB) 0, for every (r+l)-simplex S .41
r+l
where the boundary of Srtl is given by B-Z_IO 5B’

(In words, the last condition reads, the sum of the values of ¢
on the r+l-oriented r-vectors of the faces of every (r+l)-sim-

plex is zero.) Then there exists a unique r~-covector ¢ such
~

gt

that 9o V.= <p(xr).

In other words, every ¢ with properties (1) and (2) is



“4s

linear in v and defines a unique r-covector ¢. ,The unique-
/Jr ~ I3

ness of ¢ is immediate. I presenta somewhat simpler proof
~
of the linearity of ¢ than given by Whitney.
Set

F(X]"Y)Z;oueﬁxr) = (p(xlv V V ncoV ’Xr)o

Then, by (1), F is homogeneous of degree 1 in each argument.
We show that it must be linear. Suppose r =1, and consider
a 2-simplex with faces having l-directions, u,-v, and v-u.

~ ~ o a

Then, by (2),

F(u) + F(vru) + F(-v) = 0,
and using (1),

F(y-u) = F(y) + F(-u),
or, setting W= -,

Flvtw) = F(y) + Flw),

which proves that F is linear if r = 1. The general case

r > 1 is illustrated sufficiently by the case r = 2. Consider
~si = - , i=1,2,3,

the 3-simplex s with ¥, = P - Py i=1 3 PoP1 PP the

vertices of s. It follows from (2) that

F(v MBS v)+F(v,v)+F(v2N3)+F(v,v)

(9 1)



e

for all linearly independent MIDS DS In (9. 1) replace the
arguments Vv,,¥,s ¥, by Yy 2Y and ayas respectively.

Then, for every a >0,

Flalv,-v,)s ¥ -av,) + F(y,_l, ay,) + Flay,,av,) = 0. (9. 2)

Now use (1) to obtain

2
aF(v,-Vs ¥)73Y3) FaF(y;,v,) +a F(v,,v,) taF(v,sv,) =0

37 ~1

(9. 3)

Divide (9. 3) by a. The limit of the resulting expres sion for
a—>0 is

Flyoy

3" ’le) + F(Xl’ XZ) + F(X3’ rY/l) = 0° (9“ 4:)

Now using (1), the antisymmetry of F, and setting Yy =W
one gets

(v +w, v,) = F(v,,v.) + F(w, v.),
POV | ~2~] ~1

which proves the linearity of F in its first argument. By
antisymmetry, it is linear also in the second argument. Hence,
F is an antisymmetric, multilinear function of two vectors;
i.e., ¢ is a 2-covector.

Proof of the main theorem: Let F be a semi-sharp co-

chain so that (a), (b), and (c) hold. Choose any point p and



W

an r-direction d. Let s_,s be a sequence of r-sim-
~t

1 2,--0

plexes containing p and having the common r-direction ,9;

~ o~

d=s /liilq’ i=1,2,... o Suppose that diam (Si) - 0. Set

olp:d) = lim F(s)/|s,] (9. 5)
q

i-> oo

Existence and uniqueness of the limit is proved as follows:
Let s be any r-simplex with r-direction d such that
s C Ug(p)., Then one can choose an r-cube T containing p

such that TV 7C s, k=1,2,c0.,n and

~k
n

s - = T 7T| < €, (9. 6)
k=1 vk !

for every € > 0. Then, by property (a) of F,
n
F(s— =z T -r) < Nis -T 7T _<__Nel. (9.7)
k=l Yk | Sk Iq

By property (c) of F, it follows that, for each value of k,

‘F(T&kT-'j

so that by summing (9. 8) over the s values of k,

I ) n
F( =2 T T-ST) _<__ il T T-~1T
k=1 Sk k=1 Yk

<elqu’ (908)

< < o
__nel'rlq _e]slq

(9-9)



Therefore,

[F(s)[r] - F()]s] |=

F(s) - ZT 7 l'rl
F(k=1 l’k)

+F(E T T)IT[ - F(7)|s|
- \k=1 Ak

n
FLZT T)lTI ~F(T)Is|
=1 Xk

< Nellfl +

< Nell'rl + I-rl F(Z TXkT) - nF(7)
+ [nF(r) 7] - F(7) |s]]
< Ne|r] +elr| |s] + |7|N(]]| - |s])

< Nell'rf + I'rl lsle +Nell-r|.

Dividing by |7| |s|, one gets

F(s) F(1)

EIE

< 2

+ €,
B EY

For each s, choose € = ls]e/(ZN). Then,

F(s) _ F(1)

|s] [+

2¢. (9. 10)

—

The inequality (9. 10) holds for every s(C Ug(P); hence, for any

pair s and s'C Ug(p)



F(s) F(s")

[s] ]

< 4e, (9.11)

—

This proves the existence and uniqueness of the limit in (9. 5).
Using (9. 11) it is also easy to see that o{p,sd) is continuous

in the argument p:

F(Si) F(sj
| elps d) - go(p‘,g)l =| lim ~—— - lim —= 1|, (9.12)
i~ l51]  jroo I8yl

where 8. 1=1,2,... is a sequence of r-simplexes with
r-direction d each of which contains the point p and S_%’
j=1,2,... is a sequence with r-direction S, each of which

contains the point p'. We may choose s = Tvs;, where
~

v = p-p'. Then (9.12) becomes
nt

1y . 1
F(Tvsi) F(Si)

lolp, @) - olp', d)] = lim b2 : (9. 13)
~ i= 00 ]S{]

Using property (c) of F we now get

IS"(P’Q) - ¢(p‘,§)l < e, for all IXI = !P"P'l <t
s;C T lo) (9. 14)

From the definition of the Riemann integral gf(p)dp of a con-
s

tinuous function f£: AP -~ R, it now follows that,



F(s) = 5¢(p:§)dp (9. 14)

s
for every simplex s with r-direction d. Cut s into sim-

plexes s,,s seees 8 of diam < ¢. For each s, let P, € 8.

1772
Then

F(s,) - gs ¢lp, d)dp| < |F(si) - ¢lp;» Q) |si|_l

i

+ | (Tapp @) - otp 0 ap
Si.
< .o
< 5¢ Isil,

hence,

< 5 ¢ ls];

w(s) - { ote 9ap
S

which proves (8. 14).
To this point, only the properties (a) and (c) of F have

been used. Property (c) is now invoked to prove that ¢ has

the properties (1) and (2) of the Lemma. Now ¢{p, ’(‘1,) has been

defined only for r-directions d; i.e., only for simple r-vectors

such that |d| = 1. Define ¢(p,v) for all simple r-vectors v
~ ~ ~
by setting
Apv) = |v| oo, v/ |y

Since, by definition, ¢{p, 9}) = -~ ofp, —S):

(Y



@lp.av) = aelp:v) (9. 15)
for all real a. Hence, ¢{p,v) satisfies the first condition of

the lemma.
Let pe s be an interior point of an (r+l)-simplex and

let Sy be s contracted towards p by the factor N and set

Bs)\ = ZilsM, where #he SM are the oriented faces of s}\o Then

= A

41
sl

5l IN)\JI ‘ N lS

|5, | s |

Let SXC Ug(p) for )\.i)\.o and let Si be the r-direction of

s,. Then
1
?go(pagu) -S‘ ¢{p, d)dp| = ?g [olps g,) - Pla-d,)]dq
Y *\i
> e =
< iCISMI eZ)\ Is]

Also, by property (b),

S GD(P;g)dp = [F(as)\)] <e Iaﬁxl iekrlail.
Bs)\

Hence,

1= olp, s, )| < 2en"|as]
1

and dividing by 2 we get

I? ¢(P’§Ji) < 2 Iaf,l"



Since ¢ 1is arbitrary, ¢(p: ,Y:) has property (2) of the
lemma. It follows that ¢ is an r-covector for each value of

p- Define ,gz(p) by
op.y) = @p) -y, (9.16)

and denote the corresponding r-covector field by ¢ (i.e., ¢

is a continuous r-form). Then

F(s) = Sso(p,g)dp = 54) (9.17)

s )

which is the assertion of the theorem.

Remark on notation. Let df}(p) be an r-vector with

r-direction dr such that the r-volume of any s'(_ s with
r-direction dr is given by g |ds(p) l Then, the integral of
st ™~

the r-form ¢ is also denoted by
F(s) = Scp = Sg(p% ds(p) = S.gy ds. (9.18)
s s S

Other expressions for F(s) are as follows: Let E(i) and g
be the duality transformations defined with respect to an arbi-
trary n-covector and quadratic form qe The first of these is
independent of q and the second depends only on the orientation

of the n-covector used to define D(i). Set



Do= g,  D'ds=ds,
Dg=¢ D'ds=ds
A A
D(i)¢ = ¢, D'(i)ds = ds.
Then,
n{n-r A A
pe) = (o= (gag =0 (gt
S S 5
= (-2t SZ;» ds. (9. 19)
s

A o~ A ~
The quantities ¢, ¢, ds, and ds depend on a quadratic form
~J ~/ ~> ~t

and an n-covector. These could even be chosen as continuous
functions of p. But the integral §¢ is independent of any
quadratic form or n-form D(i, 9H sits value depends only on
the r-form ¢t A" - V[nr] and on the oriented r-simplex s.
To use the representations (9.19) masks this independence and
the simplicity of the definition of S.ga., Nevertheless, many of
the standard and traditional formulzs of classical vector ana-
lysis rest upon the possibility of these alternative representa-
tions, and to exhibit the relation between some of the results in
the physical theory involving r-forms and known classical
results, it is necessary to introduce expressions like (9.19).
In particular, in classical vec'tor analysis, the (n-r-1)-forms
defined by

A
div ¢ = D rot ¢,

div ;= D rot ¢, (9. 20)



are called the natural and absolute divergence of ¢, respect-

ively. The divergence theorem or the definition of a regular

r-form Egq. (7.5) then appears in the following guises:

i dg = S‘rot @ - ds, (9. 21)
SN s ~ ~
- ? A A
= (-)n(n ) S (div f) ° ds, (9. 22)
8
A A n [
S\% df, = (=) ‘g(d1v ,‘ﬂ) o df,’ (9. 23)
s s

and in similar guises with E replaced by D.



10. SMOOTH MANIFOLDS

In the physical theory considered in the lectures, it is not
assumed that space or space-time is an affine space, and we
require a definition of r-covector fields and a theory of inte~
gration of r-forms in a smooth manifold. We sketch here the
theory as presented by Whitney.

An n-dimensional smooth manifold M" is a mathematical
system of the following sort. M"” is a connected topological
space with open sets U, U', ... together with a collection of

coordinate systems Xy i in some index set. FEach coordinate

system is a homeomorphism

x;i O, M*, o,C A" (10. 1)

i

of an open set in A™ into M, A" a fixed n-dimensional

affine space. A finite or denumerable setof the coordinate patches

-1
0, th dx, =
g7 0 R X 0y T Xy

is defined in some O,,( O, and :0.. > A" is a mappin

_ n
Ui—xi(Oi) cover M. If UimU

from an open set in A"™ into some other open set in A" We

require that the gradient of Xij defined by

t

Zx..(p, )\f) = lim (10. 2)

4 0+



exist and be continuous in P throughout its domain. It can be
shown that Xij(p’ X) is linear in V3 hence, Y'Xij(p’x) =
Yxij(p) -V, and inj(p) is a linear transformation in Vn, the
translation space of A", The coordinate systems of a smooth
manifold have the property that VXij has rank n at each p
in the domain of Xij' The manifold M- is s-smooth if each
Xij is smooth (i.e., if v°® Xij for all i and j, where de-
fined, exists and is continuous).

If a subset of the U_1 exists such that the Ui cover M
and such that the Jacobians det IV Xij‘ are all positive, then
M> is orientable and the set of coordinate systems X, orient

M". Any coordinate system X‘j related to one of the X by a

transformation with positive Jacobian is a preferred coordinate

system of the oriented Mno
If an s~smooth manifold Mn is defined in terms of coor~
dinate systems X,. call any mapping X = X4 ® 2 O~ M

obtained by composing any %, with an r-smooth, r > 8,

homeomorphism ¢: O —~ Oi’ oC A", an admissible coor~-

dinate system for M. Henceforth, by a coordinate system of

Mn, is meant any admissible coordinate system for Mn.,

A mapping f: M~ M'! of one k-smooth manifold M into



another M!' is s-smooth, s <k, if X of oy, where de-

j,
fined, is s-smooth. When M'=R (real line), f is a real-

valued s-smooth function in Mj; when M = R, or a connected

open set in OC R, fis an s-smooth parametrized curve in M'.

Consider all the smooth curves in M defined by f,f!,...
which contain a given point x € M®. We may assume, without
loss in generality, that the domain of each f, f', ... contains
the point 0 ¢ R and that f(0) = x. Let X4 be a coordinate
system of M" such that x ¢ U,. (We say that Xy is a coor-

i

dinate system about x.) Then fi = X;I o f is defined near O.

Let
. clfi
Affi: T (0). (10. 3)

°

Then, by definition, Si is a vector in V", the translation
space of A®, Call two smooth curves through x equivalent
(in particular, tangent) if ji = glo Since f‘i = Yxij(f‘;)' this
definition of equivalence is independent of the coordinate sys~
tem. By a vector v(x) at x in M" we mean an equivalence

class of smooth parametrized curves in M" which pass through

x. We call the vector ‘f;,l e V' a representation of the corres-

ponding set of equivalent curves v{x). The sum X(x) + u(x)



and the multiple )\\L(x) of vectors at x in M is defined by
addition and multiplication of their representations in v,
From the linearity of the law of transformation of the repre-
sentations corresponding to two coordinate systems, Wwe se€€
that the definition of Y/(X) + %(x) and of ky}(x) is independent
of coordinate system. The set of all vectors x(x) at x in

n . . n
M> forms an n-dimensional vector space V {x), the tangent

space of M® at x. Each coordinate system X of M" about

« defines an isomorphism

n n -1
ZXi(P)e v Vi), P X (%), (10.4)

where Y»Xi(p’éi) = x(x), YJ(X) the equivalence class of smooth
curves having the representation é.l in the coordinate system
X0 The n-dimensional vector spaces Vn(x) and Vn(x‘),
% = x', though isomorphic, are distinct. In general, X(X) +1'})(x’)
is not defined. One could define Y}(x) + 1{{)(}{‘) by adding their
representations in some coordinate system ¥.. provided x
and x' were both in Ui; but such a definition is not independ-
ent of X4

A mapping

gg MO > M, m<n (10. 5)



of one smooth manifold into another is regular if the following
holds. Let x = f(X), andlet x, be a coordinate system of

n
M about X, Xo @ coordinate system of M~ about x. Then

m n
= i A, Let
fai X q°% maps some R C A into e

£, (pe) - £,()

= ° = i ’ 10. 6
t—~0
pe A, Ve V. Then, by definition, Zfai(p) is a linear

transformation of v™ into V. The mapping f is regular

.o-1
at X if Vfa is continuous at p = X4 {(X) and has rank m.

i
This definition of regularity at X is independent of the coor-
dinate systems X3 and Xg* f is regular in an open set

oC M if it is regular at each xC Q; itis regular if it is
regular for all X ¢ M, Now in M and Mn, the coordinate
systems X3 and Xg establish the isomorphisms in and an

between V' and Vn(x), and between V' and Vm(X), re-

spectively. The gradient of the mapping V£ is then defined by
-1
Vi = an o Vfozi 0 (in) o (10.7)

The gradient of f is defined for every X« Mn, and its defi-
nition is independent of coordinate systems. Its value ata
point X of M" defines a linear transformation V£(X):
Vm(X) - Vn(x), x = f{X), of the tangent space of M7 at X

into the tangent space of M" at the point f{X).



11. INTEGRATION IN MANIFOLDS
A tensor whose carrier space is the tangent space Vn(x)
at a point x of a smooth manifold M" is called a tensor at x.
A tensor field in a manifold is a function
n k

T: M~ — Vnﬂ(x); x e M>
n

k
such that T(x) ¢ Vnz(x). (The values of k and £ are the
n

same for all x; and T(x) is a tensor at x.) The field T is

continuous or s-smooth if its representation X;(T) defined by

1 2

*
Xi(T)(p’Xl’Xzsoooa ,g ,--o)—-

o
~

-1 1
T(X, inﬂxl, ZXiOY)Z’ oun,gxi 'gzs ooo); (11.1)

k .
n’ o e Vn, in any coordinate system X3

-1
p = Xi (X)’ Vk € V
of M is continuous or s-smooth. This definition of smooth-
ness is independent of the coordinate system in an r-smooth
manifold provided s <r.
. m n
The gradient V{ of a regular mapping f: M - M

considered in the previous section is an example of the more

general concept of a multi-point tensor. We may view VI as

a bilinear function

Vi V(X)X V_(x) > R.

o
L

G



m
It is a mixed tensor field over M . In general, it is nota

field in M" because only in special subcases of m=mn is
V{ defined at every point of M.

let ¢ be an r-cotensor field in M™ and let f: M - M”
be regular. Then we define a corresponding r-cotensor field

f*(go) in M™ by

B3
(f qo)(X) gli EZ’ oo e 3 gr) = (P(X, ngl’ Yfgzg o0 0 2 ngr), (110 2)

where each U ¢ v(X), x=£(X), and ViU = VX U)e V2,
Now S ¢ has been defined only for simplexes and linear

combinations of simplexes in an affine space A®. We wish to
extend this definition to curvilinear simplexes and certain open
sets in a manifold. This can be done following Whitney. First
of all, consider an n-form ¢ in A" Say that ¢ is summable
over the open set RC AR if there exists a polyhedron P with
the property that for every €~ 0

Sﬁ"

Q

< ¢ for all polyhedra QC R - P. (11. 3)

Then if ¢ is summable over R, there exists a number i{go

ke

such that

<e¢ if PC QC R. (11.4)




This defines &go for certain ¢ and open sets RCAn, If,

with respect to an arbitrary positive definite (metric) in the

v® or A", R= sup {Q: QCR, Q a polyhedron} < co and

lgol < o, then ¢ is summable over R and, therefore, S;w

is defined. We need also the fact that if ¢ is summable over

R, then so also is T¢ where 7 is any bounded continuous real-
valued function in R.

The next result we need is the transformation formula.

Let f be any one-one regular mapping of the open set RC A"

onto the open set R'CA‘lrl with ?f(p) >0 in R. Let ¢ bea

. . sk .
continuous n-form in R' summable over R!'. Then "¢ is

summable over R, and

Sl;f*¢ = SR¢_ (11.5)

Next we define S\A ¢ for any compact smooth oriented
Jomn

manifold M". Let spt(¢) denote the closure of the set of
points x ¢ M" where ¢{x) # 0. If spt ((p)CUi where Ui is
a coordinate patch of Mn’ X; 2 preferred coordinate system

of Mn, then we set

&/ngo: So X; P spt{e) C x;(O;)- (11. 6)
i



That this definition of i\,;n(P is independent of the coordinate
system follows from the transformation formula (11.5)
Suppose next that spt(¢) is not contained in any U'1° In

this case, let 2 ™ be a partition of unity with the following
i

property. Let the finite set of coordinate patches Ui’
i=1,2,...,N cover M”, where the X3 orient M™. Then
one can construct a set of real-valued smooth functions ™

in M" such that 1\'.1(x) =0, x¢ Ui’ and Zi)'rri(x) =1, xce¢ M7,
Express ¢(x) as ?goi(x), <pi(x) = Tl'i(X) o({x). Then i\y ? is

i
defined as above, and we set

S;\Ancp = >§ Sugoi. (11.7)

i

The definition (11.7) can be shown to be independent of the
partition of unity = ™ and the coordinate systems X;°

Now let R be any open subset of an oriented manifold M
such that R is compact. Let ¢ be any continuous n-form de-
fined in a neighborhood of R. Then there exists a finite num-
ber of coordinate patches Ui which cover R, X3 preferred
coordinate systems of M"”. Define the ™, as above. Then,
for some neighborhood U of R, ;'ni(x) =1, xe U. Set

1

goi = Wigo and define



Lq)i = g X9 = S‘rp = ?SR‘PF (11.8)

x; (R)

Again, it can be shown that this definition of S‘ ¢ is independ-
R

ent of the coordinate systems X3 and of the partition of unity
27 T,
i
We record here Whitney's version of the divergence theo~

rem in manifolds. For the complete definition of a standard

n-manifold, I refer the reader to Whitney's book. It can be

remarked that every smooth image of a polyhedron in A" is

a standard n-manifold, and every regular region in the sense
of Kellogg is a standard n-manifold. To state the theorem we
need at least the following partial description of a standard
n-manifold. There is a connected compact topological space,
M, a closed subset dM of M (call it the boundary of M) and
a closed subset aO—IC/I_ of 8M (call it the edges and vertices of
S_I\Z), M - 8M is a smooth oriented n-dimensional manifold,
and oM - 80M is a finite collection of oriented (n-1)-dimen-
sional smooth manifolds. At each point of x ¢ (6M - 801\/1)

there is defined an outward normal vector x(x) = 0, which,

by continuity, is defined at points of M - 8M near x. The

orientation of the smooth manifold M - OM is fixed by the



ordered set {v(x), vl(x), ceon vn_l(x)} of vectors, where
the last n-1 elements determine the orientation of the part of
oM - 80~I\Z containing the point x. Let ¢ be an n-form such
that

() ¢ is defined, continuous, and bounded in M - 861\711
and is regular in M - 8M,

(b) ¢ is summable over oM - BO—I\Z,

(c) rot ¢ is summable over M - aM.

Then

S____ 9= S:___ _rot ¢. (11.9)
8M~80M M-9M

Henceforth, when the meaning is clear from the context,
we shall abbreviate (11.9) to read
g‘__cp = S‘___. rot ¢. (11.10)

oM M

When ¢ is smooth and M is 2-smooth, rot ¢ is given
by rot ¢{x) = X;’{B V ¢, where % is any coordinate system about
x and 8V ¢ is defined in (7. 7).

Let f: M™ — M™ be any regular mapping of an oriented

r-dimensional smooth manifold into an n-dimensional smooth

!



manifold and let ¢ be an r-form in M". Then f*qp is an

r-form in Mr and we set

5;'<p = S;{f*go, R' = f(R). (11.11)

This defines the integral of an r-form ¢ in Mn, r <n over
every r-dimensional smooth manifold or piece R' of a smooth
manifold in M., If R'= £(R), and RC M" is a standard

manifold, then

S‘ o = S:_ rot ¢ (11.12)

9R R!

provided the (r-l)-form ¢ is continuous in some neighborhood

—

of R', f¥*p is regular in R, f*(,o is summable over aﬁ-ao'ﬁ,

and £* rot is summable over R.
4



12. CURVILINEAR r-COCHAINS

Let Mn be an n-dimensional smooth manifold with coor-
dinate systems it Oi - UiC M™% 1t sC Oi is an r-simplex

in A", we call Xi(s) a curvilinear r-simplex in M. A

s . n .
curvilinear r-chain in M is an expression of the form

i . . n
c=2a S, where each 8, is a curvilinear simplex in M7,
. . i .
sim sj = gum of chains of lower dimension, a are positive
or negative integers or zero. We drop the adjective '‘curvi-
linear" when the meaning is clear without it. The sum of
: n ., : :
r-chains in M is defined in the same way as the sum of
. . n i s n ., . .
r-chains in A . An r-cochain in M  is a linear function of
) n i . .
r-chains in M. If c=2Z a 85 then § ¢ is defined as in

S
1
the last section and we set

S‘” - zal g P (12.1)
c

The value of Sqo is independent of its representation as a sum
¢ n

of r-simplexes. Thus, every r-form ¢ in M, summable

over every curvilinear r-simplex in M", determines a unique

r-cochain in M" by (12.1). If the (r-1)-form ¢ is regular in

a neighborhood of ¢, then

V @ = SI rot ¢, (12. 2)
“dc c

G



and if ¢ is smooth, then roto=28V ¢= Xi(BV X;1¢), (Cf.,
§8 for the definition of 8V vy, y an r-form in Ano) By the
triangulation theorem for smooth manifolds, every compact
oriented manifold can be expressed as a curvilinear r-chain of
the form M’ = X 8, Thus, for any compact r-dimensional
manifold M® in M” and any regular (r-1)-form ¢ in M",
we have a relation like (12.2) with ¢ replaced by M'. We
say that an r-cochain defined by integration of an r-form ¢ in
M" is continuous or s-smooth accordingly as the r-form ¢ is
continuous or s-smooth.

The three properties (a), (b), and (c) of §9 which charac-
terize a semi-sharp r-cochain in an affine space A" do not
have an immediate invariant significance for r-cochains in a
manifold. But since they are purely local conditions, using
the coordinate systems of a manifold, the properties can be
stated in terms of the inverse images Xgl(s) = s' of curvilinear
r-simplexes contained in some UiC M and of the corresponding
values of the r-cochain, Thus, if F is an r-cochain in Vi
and we set F(s)=F!s'), s'= Xi—ls, then F is called semi-
sharp if and only if F' is semi-sharp. It follows that semi-

sharp r-cochains and continuous r-cochains in a manifold are



] . n
in 1-1 correspondence. Every semi-sharp r-cochain in M
n
determines a unique continuous r-form ¢ in M such that
F(c) = Scp and, conversely, every continuous r-form .¢ in
c

n . . . :
M~ defines a unique semi-sharp r-cochain by this same rule

of association.

o



e

13. MOTIONS AND INVARIANT COCHAINS
Let M and M" denote smooth manifolds of the dimen-
sions indicated. Let O(C R denote a connected open set of

real numbers., Then a regular mapping
f: MTx0~>M", m>n+l (13. 1)

is called a parametrized motion of M” in M. The trajectory

of a point X ¢ M"® is the smooth parametrized curve

£ 0~ M, £.(t) = £(X,t). The orbit of X is the set of

11

points {x; x=f(X,t), te O}.

When m

1

n + 1, define a motion of Mn as a smooth
mapping
po Mo M (13. 2)

such that V{' has rank n in MnH. The orbit of a point

X ¢ M is the set of points {x; f'(x) = X}. Using the implicit

function theorem, it can be shown that every connected piece

of an orbit is a smooth parametrized curve in M. Thus, when

m =n + 1, there is no distinction locally between motions and
. . n n+1

parametrized motions of M~ in M . But the orbits of a

motion may not be connected so that motions and parametrized

motions in the large are not in 1-1 correspondence. Moreover,



the existence of motions depends on the character of the mani-
n m
folds M~ and M . In the following we shall be concerned
only with local properties of motions and parametrized motions
only.
Assume now that m = n + 1. Then (12.1) has a unique

smooth inverse f—l: I\/In—l-1 - Mn ¥ O which consists in two

smooth mappings f*: .’L\/In.*.1 -~ M" and T: I\/In-l-1 - O, where
Vf' has rank n throughout its domain and VT has rank lL.
Thus, every parametrized motion (m = n + 1) determines a
unique motion f!, but not conversely. Two parametrized mo-
tions with the same orbits determine one and the same motion
by this construction. Through each point x¢ U = f(Mn X Q)

in the range of f there passes one and only one trajectory.
Let X(X) € Vn(x) denote the tangent vector of the trajectory
through x. From the regularity assumption, the vector field

v with these values in U is continuous. We call this vector

field in U, the velocity field of the parametrized motion f.

1 . . : \
If f's Mn+ —~ M"” is a motion, then at each point x in the

domain of f!', Vf' has one and only one linearly independent

proper vector y(x) =# 0 such that

Vil(x) « wix) = 0. (13.3)

/



The velocity field of a motion is the equivalence class of smooth
vector fields in the domain of f' such that x(x) %+ 0 isa
proper vector of Vf{(x) with proper value zero at each point.

Let f: M° M be defined by £(X) = £X,t). Then

-1

is a 1-1 regular mapping

: - U o
TT Ut t+T (13.5)

of an open set UtC Mn’l-1 onto an open set Ut-i-TC Mn+l. We

have

= i = o o 6
TO 1 (the identity), TTo TT' T"r-!-‘r' (13. 6)

let s, be any curvilinear r-simplex in Uto Then s

t - TT(St)

t+T

is a curvilinear r-simplex in Ut+T° Let ¢ be an r-form in

M, Then

Flspm) = gso (13.7)

St-l-"r

is defined for all StC Ut' If F(st, 7) is independent of T

for all such s We say that ¢ is an invariant r-form under

the motion f, or that the corresponding r-cochain F(st ), de-

fined by integration of ¢ is an invariant r-cochain under the

motion f.



Theorem: Let F(st, T) be defined by (13.7). Let v be
the velocity field of the parametrized motion f. Then, if the
r-form ¢ and the (r-1)-form v A ¢ are regular in the range

of f, F(st, T) is differentiable in T for each 5, and

dF(st, T) )

dr 5 [vA rot ¢ + rot (vA o] (13, 8)
s
t+T

To prove (13.8) consider the value of

AF=F(st,T+'r‘) ~F(st,'r)=§ ¢ -S 0.
Sthrert  tr

The quantity AF differs from the integral of ¢ over the

boundary B(St+T XI), I={t = <t< T+7'}, by an integral

£ X 1:
of ¢ over 8St+'r I

= g rot ¢ +S‘ @ s
X X
St+'r I (ast-%"r) I

where we have used the regularity of ¢. But the integrals on

the right can be expressed as iterated integrals,



=y € i
AF = \d7" v A (rot ¢) + \dr" VA
) }

t+T 0 St+T

= S;d'r” S v A rot ot ‘gd’r" S‘ rot (v A 0), (13.9)
8

t+T s1:-!-'r

where we have used the regularity of v A ¢. Thus, dividing
(13.9) by 7" and taking the lim 7' = 0 yields the formula
(13. 8).

It follows that if ¢ and v A ¢ are regular, then ¢ and

the r-cochain F = Scp are invariant under the parametrized

motion f with velocity field v if and only if

£.vgo==v,\ rot ¢+ rot (v A¢) =0, (13.10)

at each point in the range of f. The continuous r-form £.Vgo is

called the Lie derivative of ¢ with respecttothe vector field .v.

Let D(x) be the duality transformation defined by any linearly
A A
independent set of vectors at x. Set ¢= E(go) and div ¢ =

D(rot ¢). The dual of £.V<p is then given by
A A
B(.ﬁ.vgo) = (div ¢) X v + div (¢ X v). (13.11)

If the vectors used to define D are the tangent vectors to the
coordinate curves of a coordinate system, then rot ¢ and

A
div ¢ are given by the differentiation formulas 9A ¢ and 9 A ¢



provided that ¢ is smooth. But the formulas (13.8) and (13. 11)

hold under the weaker hypotheses made in deriving them.



14, PHYSICAL UNITS, PHYSICAL DIMENSIONS, AND
PHYSICAL QUANTITIES

Weyl has remarked:

"However, not only points are required to be represented
by reproducible symbols, but also every other kind of geo-
metric entity, and when passing to physics all sorts of physical
quantities like velocities, forces, field strengths, wave func-
tions, and what not, expect a similar symbolic treatment.

One often acts as though once the points have been submitted
to it by fixing a frame of reference for them, all these other
things will follow suit without necessitating further provisions.
This is certainly not truej at least further units of measure-
ment have to be fixed at random so as to make the scheme of
reference complete. "'

For the purposes of these lectures, the following formal
definitions will be adopted. For a discussion of the historical
use and development of the concepts and mathematics of phy-
sical units and dimensions, see Ericksen's Appendix on Tensor
Fields in The Classical Field Theories, Vol. III/1, Handbuchder Physik.

A physical unit g is a vector different from zero in a
one-dimensional vector space U called a unit space. Thus,

any physical unit U ¢ U is a basis for U, A function f: U —~ L



with values in some linear space is said to have physical dimen-

sion [gn] if
-n
HaU) = 2 " H(U); (14.1)

i.e., if f is a homogeneous function of degree -n. More gen-
erally now, if f: Ul X UZX oes ><Un - L. is homogeneous of

degree o in the argument Uk' we write

n, n, n,
phys. dim. f = gl gz 0oeo U . (14. 2)

In these lectures we restrict the use of the term physical
quantity and use it only to mean the following. A physical quan-
tity is an r-cochain in some manifold M™ with values which
are homogeneous functions of a set ga’ a=1,2,...,N of
independent physical units. Thus, if F is a physical quantity,
it has a definite physical dimension, and if F is semi-sharp

, ] n
or continuous, there exists an r-form in M~ such that

F(C, ElgcuaggN) = S;(p(g:l,ono’gN), (149 3)

~
and we write

n n
phys. dim. F = phys. dim. ¢ = l:gll”.gNﬂ,(lél,‘i)

with suitable values for the exponents Ny eees Dy

'\\»;‘5



In particular, if phys. dim. F = [U], we write,

-~

F(e,0) = | @U). (14.5)
~ c

The real number F(c, H) is called the amount of the physical

quantity F in ¢ measured in units IﬂI}z (p(g’) is called the

~t

density of the physical quantity F measured in units U.
~S

Our use of the term ''physical quantity' in these lectures
lies closest to the concept and definition of an "extensive"

quantity as that term is used in the literature of thermostatics.



LECTURE 1

ELECTRIC CHARGE AND MAGNETIC FLUX

wIn the application of mathematics to the
calculation of electrical quantities, I shall en-
deavour in the first place to deduce the most
general conclusions from the data at our dis-
posal, and in the next place to apply the results

to the simplest cases that can be chosen.'
J. C. Maxwell

I.1. INTRODUCTORY REMARKS

The electrodynamics of elastic media finds important
engineering applications in the phenomena of photoelasticity
and piezoelectricity. The classical theories of these effects
and of many others are embraced as special cases by the gen-
eral theory of the electromagnetic field in material media to
be presented in these lectures. The lectures will stress an
orderly introduction of the physical concepts and laws of

nature which are common to a broad class of special theories



We begin with a mathematical theory of electricity and
magnetism and only later introduce the mechanical and kine-
matical concepts of length, time, force, stress, energy, and
momentum. It is common knowledge that modern concepts
of length, time, and simultaniety had their orgins in the theory
of electricity and magnetism and that these concepts are not
entirely consistent with the Newtonian viewpoint. One objective
of the treatment of the electromagnetic field given here is to

trace again these origins.

I.2. ELECTRIC CHARGE AND MAGNETIC FLUX
It is possible to understand the classical equations of Max~
well and Lorentz governing the electric, magnetic, charge, and
current fields in terms of only three primitive concepts:s
1) the distribution of magnetic flux
2) the distribution of electric charge
3)the universal relation between these
two distributions
For this purpose we begin by taking the concept of an event as
as

primitive and undefined, just a point is primitive and undefined

in Euclidean geometry. We call the set of all events, event-space,

o

o)



and denote it by E . We lay down the first of some eighteen
assumptions or principles to be introduced in the course of the

lectures.

Al: The set of all events is an orientable 4-dimensional

smooth manifold.

Events will be denoted by lower case Greek letters £, &',
g, etc. The coordinates of an event are denoted by €a,
where the index a ranges over the values 1, 2, 3, and 4.
Greek lower case indices will always have this same range.

To each oriented 2~-dimensional submanifold 6 ZC 6

A Fvor f 4 E”

2 e
we assign a real number F(é‘: , i) ) called magnetic flux

where @ is a unit of magnetic flux.
=~

A2. Magnetic flux is a continuous 2-cochain in g with

phys. dim. [@]

It follows from A2 that there exists an electromagnetic

field ¢, a continuous 2-form in (‘: , such that

LAY



Yo

rE” §) = jM?) :
g 2~ (2.1)
3] -

1 On

phys.dim. ¢

A3: (Faraday's Law of Magnetic Induction) The magnetic

2
flux of every cycle ceC 5 vanishes:

é 1) = 0 (2. 2)

%
From Faraday's law of magnetic induction follows the
existence of electromagnetic potentials o , regular l-forms

2
in 6 , such that the magnetic flux through any E° is

given by
rE% O = jg o (2.3)
= Je =
where,
phys.dim. a = [@] , (2.4)
rota = ¢ . B (2.5)

The distribution of magnetic flux does not determine a
unique electromagnetic potential for if a satisfies (2. 3) for
2 .
every 5 , then so also does a' given by

a' = a + rTot P , (2.6)



where P is an arbitrary regular O-form in 6 (scalar field).
Next we introduce the definition and certain properties of

electric charge in precise analogy with magnetic flux., To

each oriented 3-dimensional submanifold of events g 3C£ we

assign a real number C( 83, QQ ) called the electric charge of
~

3 . .
5 measured in units of electric charge Q.
~

A4: Electric charge is a continuous 3-cochain in 4 and

phys.dim. C = [Q] .

According to A4 there exists a 3-form X in E s

the charge-current field , such that

c(E3q) = fx@) ,
e (2.7)
phys.dim. x = [R]

A5; (Law of Conservation of Charge) The electric charge

of every cycle C3 is zero:

x = 0. (2.8)
It follows from the law of conservation of charge that there

exist charge-current potentials n , 2-forms in g , such that



0(53’§):j£ Q) (2.9)

2e3
phys.dim. n = [Q], (2.10)

rotn = X . (2.11)
The charge distribution does not determine a unique charge-
current potential. If % satisfies (2.9) for every E 3, then so

also does n' given by

n"=mn+tzroth, (2.12)
where B is an arbitrary l-form in E .

When the electromagnetic field and the charge-current
field are not only continuous but regular, then Faraday's law
of induction and the law of conservation of electric charge are
equivalent to the local conditions

rot ¢ = 0,

(2.13)
rotyx = 0.

Moreover, if ¢ and x are smooth, these local conditions

are expressible in terms of the differential equations,

dVve =0,
(2.14)
ovyxy=0.

But the smoothness of the distributions of magnetic flux and

54



5

electric charge assumed in A2 and A4 is already so severe
as to rule out electromagnetic fields and charge-current fields
commonly considered in applications. Weaker assumptions
sufficiently general to include all the applications are the follow-
ing alternatives to A2 and A4, Call an r-form in (S piece-
wise regular if 5 can be subdivided into a finite number of
standafd manifolds, 5 = U 5 s Ei n gj = 0 ,

such that the r-form is regullar in each. Then replace AZ and

A4 by

A2': There exists a piecewise regular electromagnetic
potential a such that the magnetic flux measured in units

2
of (ﬁ through any E is given by

FEL B = jg o(@) . (2.11)
2

ot

A4': There exists a piecewise regular charge-current
potential 7 such that the electric charge in E 3 measured

in units Q 1is given by
P

c(&, q) = jg Q) . (2. 4")
&’

Faraday's law of magnetic induction and the law of conservation



of electric charge now follow as consequences of A2' and A4,

In each E i the electromagnetic field and the charge-current

field are given by

] rota ,

(2.15)

il

X rot 7

II. 3. DISCUSSION

No definitions of “*magnetic flux per unit area™ or of "elec-
tric charge per unit volume' have been given. No concept of
length, area, volume, or of time has been used nor can be in-
ferred from the definitions and properties assigned thus far to
magnetic flux and electric charge. The definitions and proper-
ties of magnetic flux and electric charge given here in this
generality must be attributed to Bateman and Kottler.

If a coordinate system is introduced in about an event
£, and a choice is made for the unit of electric charge, then
the charge—current field yx has a value at § represented by

components (§,Q) . If the coordinates and the unit of

Xapp

charge are transformed, these components of the charge-current
field undergo the transformation

-1 a p

XQIIBIHI(g’ %1) = R s S st X . (6,Q),

e



a
where Q'= Q 2, and s , are the components of the
i~ = o~

]

gradient of the coordinate transformation. Similarly, the
components of the electromagnetic field ¢ under the trans-

formation

T e ® L ()

St

PaplEs g)) =

i

P
where &' = é & . These laws of transformation for the

o~ ~
components of the electromagnetic and charge-current fields
were discovered, after some trial and error, by Lorentz .
From the present viewpoint, these transformation for mulas
are consequences of the definitions of magnetic flux and electric
charge. We see that these transformation formulas merely
reflect the fact that electric charge and magnetic flux, relative
to given units, are numbers assigned to certain sets of events,
and that these numbers do not depend in any way upon coordinate
systems, observers, measuring apparatus, clocks, rigid rods,

or anything else of that nature.

9



that K(qoz) and K(gol) are linearly independent and have a com-
2
mon factor. By P3 this common factor cannot be ¢ , else
A2 2

we would have K(¢ , ¢ )= 0; hence the common factor must
3,. . 3 2. _

be €~ { i.e., a covector proportional to € ) . Thus K(¢ )=
3 1 2

TV €~ for some value of the covector 7 . But ¢ and K(e )

] 1 2 Al 2

have a common factor also since E(¢, Klo )) = Kl¢, ¢ )=

E(goz, K((pl)) = 0, where we have used the symmetry property

P2. This common factor cannot be € 4t'; hence it must be pro-
. 1 2 3 1

portional to¢ . Thus K(e¢ )= a € Ve  for some value of a.

3 3 4 , 3, . ; .

Now set ¢~ = € Ve . Then K¢ ) ~has a factor in common

with K(cpz)o This factor cannot be € 3 ( P3 again) ; hence

we can set K(<p3) = gV el for some value of w'. But w'Ve

2
has a factor in common with € V ¢ 3 and this cannot be ¢« 3-,

hence K(<p3) = b el\/ € 2 for some value of b . Choosing now
as a basis in V4(§) the four linearly independent wvectors e“(g)
reciprocal to the four covectors ¢ 0y(’f;.) we find that the compon-
ents of K have the canonical values set forth in (3. 2) except
that in place of some of the 1's and -1's there appear the un-
known scalar values of a and b. But from the condition

2

K~ = -1 we may deduce that the vd ues of a and of b must

both be +1, and the theorem is proved.



II. 4. THE LIGHT CONE

Two quadratic forms g and q' in any vector space v
are conformal if g = a q' 3 i.e., if one be proportional to the
other. A gquadratic form with signature (1, 1, ...,1, -1) de-
termines a cone. The cone is the set of all vectors such that
g{v,v) = 0. Every quadratic form in the same conformally
equivalent class determines the same cone. Conversely, we
can show that the cone of a quadratic form of signature
(1, 1, ...,1, -1) determines the quadratic form uniquely up
to a factory i.e., determines the conformal class of the form.
To see this recall that any symmetric bilinear form glu, v) is
determined by its values g{w,w) because q(u, v) =El(q(u+v ,utv)
- glu,u) - g{v,v) } . Now suppose that q'(u,u) = 0 whenever
g{u,u) = 0. Itis required to show that q' = aq. Let e i=l,..n
be a basis such that q(ei, ej) = diag(l, 1, -.,1,-1) . Then

q'(eAi‘en s eA* en)==0 for A=1, 2, ... n-1 because

ea t e belongs to the cone of g. From these conditions on

1 i = H
q' we deduce that q (eA, en) 0, and th@t q (eA, eA) +

g'(e , e )=0. But u=—1(e
n n

+ + i
5 eB) e is also an element

A
of the cone of q for A f B; hence, d(u,u) = 0. If this condit-

ion be expanded, then using the properties of q' already



established we get q‘(eA, eB) =0, for A% B. Therefore,

q'(ei, ej) = diagla, a,...,a, -a), which proves the assertion.
The adjoint qf of a quadratic form gq with signature

(1,1,1, -1) determines a cone of covectors in V4(§) satisfying

al(a,a) = 0.

Theorem Il. 4.1: T here exists a unique cone in V4(§)
such that, for all covectors Qo ﬁl, and BZ,
A .
Kla. VB, ,a v ,@,Q)=i[qT(a,a)qT(ﬁ:ﬁ)
1V P B2V P 22 %2 vh2

- qlta,6,) a(e,, B0

for one of the quadratic forms g(v,v) in the conformal class
which determines the cone.

Proofs Let e, be a Lorentz frame at § and let et

be the reciprocal basis. The definition of the quadratic form
K in V[42](§) depends linearly upon the choice of the 4-vector
used to define the duality transformation. Choose for this
4-vector, E = el\/ez\/ e3\/ e4 . Let natural units be chosen
for charge and magnetic flux so that KZ = - 1. For this
choice of basis, of E, and of the units of charge and flux we

) A
have the following values for the components of K:



I’E(GB)(}LT)z ﬁ(eav € ‘3 s ep'\/ € T, @, Q) = dlag(-l, 1;-15 1: "]-t 1)"

The rows and columns of the six by six matrix of independent

A .
components of K are labeled according to the same convention

(14), (23), (24), (31),(34), (12) used in (IL 3. 2). Now let Latin

indices range over the values 1, 2, and 3. One easily verifies

that
Aijkl ik Tjl il Tik ik _jl il _jk
KlJ - qu qTJ - qu qTJ - 61 6J - 61 63 (4° 3)

From this equation we may deduce that

qij = 6ij det || qrs“ o (4. 4)

On taking the determinant of this equality we find that
det u qrsu= + 13 hence,
9rs ™ t 6rs ’ qTrs =tE | (4.5)
Now use
Kijk4 - qTik q'ﬁ4 _ qTi4 quk -0 (4. 6)
and (4. 5) to deduce that
qu4 = 0. (4. 7)

Finally, from (4.5), (4. 7), and

ke I U L FL (4. 8)
one gets

qT44 = -1 when qTij = +6 -

% = 41 when q'9= 6%, -



[ e

This proves the theorem and also shows that if € u(g) is a

Lorentz frame at £, then the cone determined by K (the

light cone) is given by

3
LZ;GOE -e4®e4], (4. 10)
1=

where a is an arbitrary factor of proportionality.

II. 5. THE ELECTROMAGNETIC SYMMETRY GROUP
The aether tensor K(£) determines the electromagnetic
symmetry group as follows. Every non-singular transforma-
tion
ssV(g)+Q+§_.v(g + 0 (5.1)

induces a non-singular linear transformation

Tss W - W (5. 2)

[4%3 gy |
in the tensor space W = V[42](§)® v (£) [ @ ®] of which
K is an element. The transformation TS is defined by the

condition

R@vp, Q, 9 uvv=Klavp, o, g)ou\/v (5. 3)
where (s'.;} §;,;) =(S g S(@-), S(u), S(v)), K= TS(K), and
a and B are defined by the corresponding conditions

ac v = a v , pv= P v. The transformation S is



an element of the electromagnetic symmetry group if and only
if

TS(K) = K , | (5. 4)
1 e., if and only if the aether tensor is an invariant tensor
ander the induced transformation TS. But if K is invariant
under TS, then so also is the light cone determined by K.
Hence the electromagnetic symmetry group is a subgroup of
the transformations (5.1) for which

Tilq) = a4 (5. 5)
where Té is the linear transformation induced by S in the
space V(42)(§) of symmetric dimensionless 2-cotensors at
¢, The group of transformations S defined by the condition

(5. 5) is the conformal Lorentz groupe The electromagnetic

symmetry group is a subgroup of the conformal Lorentz group-
It has been established that the aether tensor has the

representation

K= k[(e,V e3)®(61\/€4) _ (eI\/e4)®(ez\/e3)

+ cyclic permutations of1,2,3 1 » (5. 6)

where k is a scalar with phys. dim. [Q@_llc The condition

k=1 defines natural units for Q and 6} . The e axe the



a a
elements of a Lorentz frame at & and ¢ (eﬁ) = § . The

p

transformations S in {5.1) have the form

S = ot (5. 7)
~-1
s
4 4 . . . .
where s:V (E)—>V (£) is a non-singular linear transformation
of the tangent space at §, and @ and Q are the ratios of
the new and old units of flux and charge. From the represen-

tation (5. 7) of K we deduce that a necessary condition for K

to be invariant under TS is that

-1
Q@ (sign det s ) =+ 1. (5. 8)

In other words, the transformation S must be a proper trans-
formation, and the absolutevalue of the product @-1 must be
1. One now convinces himself that the two conditions (5. 5} and
(5. 8) are both necessary and sufficient that K be invariant

T..
under S
II. 6. DISCUSSION

Taking the relation between the distributions of electric

charge and magnetic flux as a starting point, we have shown



how this relation determines a unique cone of directions at
each event. We have defined an ele/ctrornagnetic symmetry
group as the invariance group of the aether tensor which
describes completely how the distributions of charge and flux
are related in the classical theory. This symmetry group
turns out to be a certain subgroup of the transformations in a
6-dimensional vector space, the direct sum of the tangent
space V4(§) of the manifold of events, and the two unit spaces
of electric charge and magnetic flux. If the units of electric
charge and magnetic flux are held fixed, then the subgroup
of the electromagnetic symmetry group defined by that con-
dition turns out to be the proper conformal Lorentz group
of transfprmations of V4(§)o On the other hand, an improper
conformal Lorentz transformation of V4(<§) when accompanied
by an improper transformation of the unit space @@9‘: of

= =
determinant -1 is an electromagnetic symmetry element. Thus,
oddly enough, the statement commonly made that Maxwell's
equations are invariant under the Lorentz group of transfor-
mations (transformations which leave a quadratic form of
signature (1,1, 1, -1) invariant) is not quite correct for two

opposing accounts. First of all, this statement is usually

'!

.

O 2
S



made under the agreement that the units of charge and flux have
been fixed upon and not subject to transformation. In this case,
the Lorentz group does not contain the corresponding subgroup
of electromagnetic symmetry transformations. Moreover,
if the units are held fixed, since only proper transformations

4 . . .
of V (£) are then contained in the corresponding subgroup of
electromagnetic symmetry transformations, this subgroup
does not contain the full Lorentz group. On the other hand,
if transformations of the units of electric charge and magnetic
flux are properly taken into account (they are certainly of equal
importance to the transformations of the tangent space) we
have seen that Maxwell's equations are invariant under certain
. . 4 .
improper transformations of V'(§) provided they are accompa-
nied by an appropriate improper transformation of the unit

space @@9 .



LECTURE III

ACTION AND GRAVITY

“These physical hypotheses, however, are en-
tirely alien from the way of looking at things which
I adopt, and one object which I have in view is that
some of those who wish to study electricity may,
by reading this treatise, come to see that there is
another way of treating the subject, which is no less
fitted to explain the phenomena, and which, though
in some parts it may appear less definite, corres-
ponds, as 1 think, more faithfully with our actual
knowledge, both in what it affirms and in what it

leaves undecided. "

J. C. Maxwell

III. 1. INTRODUCTORY REMARKS

An essential qualitative difference between electric charge
and gravitational or inertial mass is that charge appears to oc-
cur in Nature with either sign, but mass occurs with but one

sign. Thus charge and mass are essentially different qualities

-

b3



of matter requiring essentially different mathematical repre-
sentations. How can we introduce in a natural way this essen-
tial difference within the present framework of concepts and
mathematics? We have seen in the first two lectures how
Magwvell's equations for the electromagnetic field and the
charge-current field can be viewed as conditions upon the
distributions of two physical quantities, electric charge and
magnetic flux. Each of these physical quantities has been
represented mathematically as a linear function of oriented,
submanifolds of events; the first by a linear function of
3_dimensional submanifolds, the second by a linear function
of 2-dimensional submanifolds. In neither of these cases
would it be natural or even possible to introduce a condition
that the distributions be positive everywhere (or negative).
The situation is different, however, in the case of a linear
function of 4-dimensional submanifolds in an orientable
embedding space of 4-dimensions. The 4-dimensional
oriented curvilinear simplexes in event-space can be divided
into two equivalence classes of similarly oriented simplexes.
This cannot be done with simplexes of lower dimension. Thus

it is natural to seek a theory and representation of mass con-

nected in some way with the simplexes of dimension four in g .



If a physical quantity is represented by a 4-cochain in event-
space, it is possible to introduce the condition that the value

of the cochain, for any fixed choice of the physical unit, has

the same sign on every similarly oriented 4-simplex in E .

It turns out that mass itself is not the natural quantity which

is of uniform sign on such a class, but rather a quantity we
shall call action which we may think of as related to the integral
of the mass of a 3-simplex over a l-simplex in a time-like
direction. These remarks are intended only to guide the
intuition, since formal definitions of mass. and action are given

later.

III. 2. ACTION AND GRAVITY

We introduce two more unit spaces _ﬁ_‘ and :(3_ alongside
8 and g) , and two corresponding physical quantities called
action an:; gravity.

AS8: Action is a continuous 4-cochain in event-space with

phys. dim.[A].

It follows that there exists a continuous 4-form p in

4 .
such that the action A(f ", A) of a given oriented
~



4
4-dimensional submanifold £ ° measured in units of action

A is given by

A€, 8) = f pl4) : (2.1)
64
and
(2. 2)

phys. dim. p = [A].

Now by Al , & is orientable. Thus it is possible

to divide the oriented simplexes of E into two equivalence

classes of similarly oriented 4-simplexes. Denote these

+ i}
two classes by & and & .

A8 If S and S' are any two 4-simplexes in the

. . + - .
same orientation class ( E or 6 ) , then action has

the property

A(S, A) A(S', 4) 2 0 (2. 3)
o~ -~

Now every continuous 4-cochain in g has a potential.
Thus there exists a regular 3-form = in Esuch that
4
A(E,4) = ¢ w(a)
~ ~

Yo

(2. 4)



As in the case of the electromagnetic and charge-current
potentials, w is not uniquely determined by the distribution
of action. If w satisfies (2.4) then so also does
w = a + rotf , (2. 5)
where B is any regular 2-form in 5 .
Gravity is a physical quantity with phys. dim. [G].

—

A9s Gravity is a continuous l-cochain in event-space.

It follows from A9 that there exists a unique gravitational

field Yy , al-form in E . such that the gravity G(al, G)

~J
of any curve in g measured in units of gravity E is given
o
by
1
G(E ", G) = fy(c) (2. 6)
~ ~
~ ~
1
é
phys.dim. y = [9]
Al0: The gravitational field is circulation free.
. ; 1. .
Accordingly, if ¢ s any closed smooth curve in
then
a@ q) = é vG) =0 . (2.7)
~ £

(04



It follows from Al0 that there exist gravitational potentials

¢ , regular O-forms (scalar fields) in C , such that

GlES,G) = 9§ WG) = WETN - WED ,  (28)
o€

and

phys. dim. ¢ = [g} . (2.9)
In (2. 8), §+ and & are the end points of the oriented curve
E 1° The gravitational potential is determined by the dis-
tribution of gravity only to within an additive constant. What
we have called the gravity of a curve is equal to the difference

between the values of the gravitational potential at its two

end pointso.

IIl. 3. THE GRAVITATIONAL AETHER RELATION

Guided now by the way that the distributions of electric
charge and magnetic flux are related in Maxwell!s theory,
we shall introduce a connection between the distributions of
action and gravity which, up to this point, have been treated

as independent.



A 11t There exists a linear transformation

L V,(6) [C] =% Vi,aq(8) [A] (3.1)

of the space of l-forms in Z with phys. dim. [G] into the
space of 3-forms in E with phys. dim. [A] such that

L(y) is a potential of action.

We shall call L the gravitational aether tensor so as

to distinguish it from the (electromagnetic) aether tensor K
which plays the analogous role in relating the distributions of
charge and flux.
[4*]
Let E ¥ 0 be an arbitrary 4-vector in Vv (&) and

set D(a)=dualae = E Aa, where a is any r-covector at
A
€. Then L defined by

fia,B. G, A) = D) Lia, G, A) (3. 2)

is a bilinear form in V4(§) with phys. dim. [Ag—'l]o

s
Al2: The bilinear form L defined by the gravitational
aether tensor L 1is symmetric and has signature

i‘(]-: 1: ]-: "1)°



(AR

A
The definition of L in terms of L depends on the choice

,5,\
of a 4-vector E. Since all such 4-vectors are proportional,
s
L, determines L up to a factor. Thus the gravitational
aether tensor determines , not a quadratic form, but a cone

A
of directions in V4(§) defined by Lfa,a)=0. We call this

cone the gravitational cone. The connection between gravity

and electromagnetism is established in part by

Al3: The light cone and the gravitational cone coincide

at every event.

III. 4. GRAVITATIONAL INVARIANCE GROUP AND THE

METRICAL STRUCTURE OF EVENT-SPACE

The gravitational invariance group is defined in the
same way as the electromagnetic invariance group with K
replaced by L. Thus we consider the set of all transforma-
tions

s vie) @A @ GVl @A® S (41)

of the six-dimensional vector space consisting in the direct
sum of the tangent space at £ and the two unit spaces A and G.

Each such transformation induces a linear transformation

sl



TSs W —» W (4. 2)

in the tensor space

W= V,3® vie) [gg'll, (4. 3)

43]
of which L is an element. The gravitational invariance group

is the set of all transformations S such that

TS(L) = L ’ (4. 4)

The transformations S are of the form

S = A o (4. 5)

Since L defines a unigque cone in V4(§), it follows that the
transformations s in (4. 5) must be a subgroup of the con-
formal Lorentz transformations. It follows from AlZ2 and
Al3 that there exists a Lorentz frame e, at £ such that L(§)
is given by

(&) = l[\el\/ez\je 3@ e4+ el\j62\/e4®e3

+ € 2\) NP 4®e1 + € 3\)el\le 4®e2] , (4.6)

where £ is a constant and

phys. dim. £ = [ﬁg;l] . (4. 7)

One sees from this representation of L that necessary



conditions for S to be a symmetry element are

(ig_—g_’l) sign{det s) > 0, (4. 8)
and
|det s| = éz ;_c_;:‘z . (4. 9)
One then verifies that the three conditions, s 2a conformal
Lorentz transformation, (4.8), and (4. 9) , are both necessary
and sufficient that S be a symmetry element.
Consider now the symmetric tensor ,I: defined in (3. 2)

in terms of L and an arbitrary 4-vector E ¥ 0. For every

choice of E, det L, < 0. Let E=e \lez\/e3\/e4 and

1
1 2 3 4
8 =¢ Ve Ve V e , where e, and ¢ are reciprocal
sets and ea is a Lorentz frame at £, Now we have

Le V(&) [G] - Vi) [A]

det L = 8=[ Lehvie) vieHvieH 1 (410

and,

4 -4

Fa
phys. dim, det L =[A” G ] (4. 11)

A N
If E' =a E, then L' =a L and we see that
A

A - A 2
det Lt = a4a 2detL = a det L o (4.12)

It follows that the symmetric tensor gJr defined by



e

)
o= — | (4.13)

- T
v-—det L

depends only on the orientation of E and

-1
phys. dim. gT ={Aa7 G| detg<o . (4. 14)
Thus we see that the gravitational aether tensor determines

T

a unique (up to sign) symmetric tensor field g and cotensor
field g | gTo'ﬁ g@"‘ = SE ) with signature #(1,1,1, ~-1). The
gravitational symmetry group can be characterized alternatively
as the subgroup of proper transformations (4. 5) such that

T gl= 8 (4.15)
where TS is the linear transformation induced by S in the
space of symmetric 2-cotensors at £ having phys.dim. [—ég;—l]
If g is smooth, then it is seen that the gravitational aether

relation endows event-space with a smooth (pseudo) Riemannian

structure defined by a fundamental metric tensor t g with

phys. dim. [Ag_’l}, det g <0 .



LECTURE IV

MOTION OF CONTINUOUS MEDIA

wThe idea of motion implies the existence of some
means of recognizing again and again the entity that
moves. By extending the idea of a mathematical
point we have the concept of a moving point which
we shall call an electrical point and we may start
with the fundamental hypothesis that three indepen-
dent quantities (a, B, ¥ ) are sufficient to specify an

electrical point and distinguish it from others."
H. Bateman

IV. l. INTRODUCTORY REMARKS
It is worth emphasizing that nothing in the preceding
lectures depends in any way upon the concept of motion or
the concept of a material medium. Thus it stands independent-
ly of whatever is now said about continuous media and motion.
One of the earliest questions raised by the new mechanics
of special relativity theory concerned the concept and definition

of rigid motion. In classical mechanics, a rigid motion of any



set of material points is defined by the condition that the dis-
tance between every pair of points in the set at each instant

of time remain invariant in time. In the Minkowski manifold
of special relativity theory, an instant of time is not defined.
We have given, rather, a cone of directions at each event.

Born was the first to consider the problem of extending or
transferring the classical notion of a rigid motion to the new
kinematical setting of Minkowski space. The concept and
defirition of a rigid motion of a continuous medium is an es-
sential preliminary to a relativistic theory of elastic response.
Essential also to an extension of classical continuum mechanics
to the more general space-time manifolds of general relativity
is the concept and definition of velocity and acceleration. The
objective in this lecture will be to show how the counterparts of
these classical kinematical ideas can be defined in a natural
way in a manifold of events in which there is given at each event
a cone of directions corresponding to a metric field g with

det g 0, phys.dim. g = [A —1}.,

(18]

IV. 2. MOTION OF MATERIAL MEDIA

We shall consider only 3-dimensional material media.



E

A 3-dimensional material medium is an orientable smooth
manifold of dimension 3,which we denote by % , together
with any additional structure which may be as signed to it. In
what follows, the only properties of . which will be used

are those which follow from the definition of a smooth manifold.

The points of 772/ are called material points and will be denoted

by X, X', X', etc. A motion of % is a smooth mapping

6 g1 —> W (2.1

of a set of events 5/ onto % such that f has rank three
at every point in the domain of f and such that the proper
vector of with proper value 0 is\ time-like. The orbit
of a materal point X is the set of events {éi’iff(§)= X} ex-~
perienced by the point X and is called the world-line of X.
As remarked in the preliminaries 812, from what has been
assumed and the implicit. function theorem it follows that
locally the world-line of every material point is a smooth
parametrizable curve in C . In other words, a motion may

be represented locally as a mapping

fT'zmxﬁ-‘V 6 , (2. 2)



where O is an open. set of real numbers. The gradient of
fT with respect to the parameter, VT fT is a proper vector
of V { with proper value zeroj it is tangent to the world-line

of the point X at the event fT(X, 7). The world-velocity field

of the motion is the normalized field of time-like tangent vec-

tors T
v f
v = (2. 3)

oy
1ﬂg(7;, v

It should perhaps be pointed out that the direction of v,

either forward or backward, depends on the parametrization
of the world-lines. As yet we have introduced no assumptions
which distinguish the future from the past. Thus one should
keep in mind the dependence of v upon the parametrization.
Let vT be the covector set in correspondence with v by

g: i. e., defined by VT('~u) = g(v,u). Then the world-acceler-

ation of the motion is defined by

a.T = (rot VT) AV o (2. 4)

Note that aT(v) = 0. Note also that phys.dim. v = [ I—]‘] s

1

- - -2
1 T 1] , phys.dim. aT =[AG " T ],

phys. dim. vl = [AG™

-1
where we introduce the notation T =tyA G for the time

1o . . . ’ ~1
dilation which accompanies a transformation é =A A,

~ = /A



| 2.0

/ -
G=G ! G of the units of action and gravity. Only the sign of the
~ o~

~3

acceleration is affected by the choice of these units and it is
independent of the parametrization of the motion.
In what follows it proves convenient to introduce the sym-
bol s which has the value plus one or minus one such that.
sglu,u) <0 if u isa time-like vector. The value of s depends
on the units of action and gravity. We may indicate this de-

1:_5-2]“

pendence by writing phys. dim. s = [é.(z};
IV. 3. RIGID MOTIONS
The gradient Vf of a motion (2.1) determines a linear
mapping
VE W (X) — V (£) X = (§) (3.1)
of the tangent space in the material manifold % into the
space of covectors at €. Interms of Vf and g we define

L 1ats . . -1
a symmetric bilinear function of material covectors C = by

cH, ) = s g vELL), VECAD) (3. 2)

and show that C—1 is positive definite. Set = (L) . By

hypothesis, (7f v =0, where v is the velocity vector and

i

is time-like. But then (v) = gT(w, v')= 0, where VTou =

glv,u), and VT is time-like. Hence the set of image vectors



Vf(W3) consists in covectors each of which is normal to the
time-like covector vTo It follows that SgT restricted to this

subspace of V3(‘§) is positive definite. Therefore, C"1

defined in (3. 2) is positive definite, and phys. dim. C-1 5[3-2]..
It is seen that a motion O'FM in 6 determines a set of positive

definite quadratic forms {C(é); flg) =X § in each tangent

space W3(X) of m/ . A motion of M is locally rigid at

X if and only if this set of forms consists in a single element;
i.e., if and only if £(§) = £(§') —> C(&) = C(E') The above
definition of a locally rigid motion is independent of any para-
metrization of the motion. Ifa parametrization is given, more
familiar geometric results emerge, but it is important to dis~
tinguish those results which depend on the parametrization
from those which do not.

Let T3 8 t.» R be a regular mapping of the events in
a neighborhood of £ € 6‘ into the real numbers such that T
has rank one and such that each member of the family of level
surfaces T(£) = constant is space-like. We may.choose T
such that s¢?’t - v =-1. Then IT(EZ) - T(gl) , where §1
and ﬁz are eventyexperienced by a given material point X is

the interval of proper time measured along the world-line of X



between the events El and gzo We may view (2. 2) as a one-
parameter family of embeddings of m in 5 . The image
fT(M, 1), for each value of 7 , isa smooth 3-dimensional
surface in (i , and the surfaces fT(VZ, ) and fT(%,T')
have no points in common if T ¥ 7%

In §12 of the preliminaries it was shown how a motion of
m determines a one-parameter family of motions of
defined by

T 5= o, e (3.3)

The gradient, VTT , of this point transformation is a linear
4
transformation of the tangent space V (£) onto the tangent
4

space V(£ ), € =T (£) - Let the quadratic form g

T T T T
be defined by

g (wv,8) =gl vT_(u), VT (v), T_(§)) (3.4
and suppose that the parameter tis proper time. Then the
Lie derivative of the metric field g with respect to the

velocity field v of the motion is given by

_ dg
£ g T.s5__T : (3. 5)
v

dr =0

Let a superposed dot denote differentiation with respect to t.

On verifies by direct calculation that



&(U, W, X, T) = S£g(PV(u) » PV(W)’ fT(X: T))s (3" 6)
\'4

I+ sv® VT is the projection of V4(<";) onto

1]

where P
v

the subspace V3(§,v) of vectors at £ normal to the velocity,
and u is the unique solution of P, VfT (U)= B-u o It
follows from (3. 6) that a necessary and sufficient condition
that a motion be locally rigid at X is that the restriction of
the Lie derivative of the metric field with respect to the

. . . 3 i
velocity field of the motion to the subspaces Vg, v), f{E)= X
vanish.

The differential equations expressing this condition have
the form

B, = , HE)=X.  (3.6)

t _
e = Ysp) T Yo %p)

where a semi-colon denotes covariant differentiation, V(}:

is the velocity field (covariant components of v) , and

the a are the components of the acceleration defined in (2. 4).

The tensor DB is called Born's rate of strain tensor.

V. 4. MEASURES OF RELATIVE STRAIN AND ROTATION

The transformation

Qs

Foewr

L



I |
FT(gt) = PV %f Vf(&t) (4. 1)

is a non-singular linear transformation
F(E): VAE, VI VE, V) (4. 2)
T 7t t ttT
of the subspace of space-like vectors normal to the velocity
at gt onto the onto the corresponding space at the event gt+'r°
In each of these subspaces we have the induced metric

Ty, (4. 3)

g =-s{g t s VT®V
v
For brevity, let us denote the inner product gv(u_,w, ét)

by (u,w)t, where u and w are elements of V3(§,v)o We

define the adjoint transformation E‘I by the condition

(u, FT° w)t+T=(FTT°u,w) o (4. 4)
Then

C(e)= FloF (£) (ds5)

T °t T Tt

is positive definite and self-adjoint in the sense that

(C_u, u) = (u,CTru)t = (FZ F,_u,u) =
=(F_u, F_u)70 (4. 6)
if we Vit v), u¥0, and
Cyle) = PIE) - (4.7)

We call cT(gt) the relative strain measure. Let DT(f_E,t)



be the self-adjoint positive definite square root of CT(§t) so

that D2 = C and D = DT Set
T T T T
F = R e¢eD , (4. 8)
T T T
so that
-1
R = F © D ° (40 9)
T T T

Then we may assert that R—r is isometric in the sense that

= (u, w), o (4. 10)

(RT w R W)t+'r t

This follows from the observation that
-1 ~1
g Ri=rDptooNHsl=p . (an
T T T T T T v
Thus the transformation R'r is a measure of the relative
rotation of the material about X in the configuration at &t
and the configuration at gt’i"r = TT(gt),

In terms of components one has the following relation be-

tween cT(gt) and the tensor C defined in (3. 2).

a ae B
e = - £y (8 CaplEyy,) & g (6
where go.ﬁ =S(gaﬁ ts v vp)o (4.12)

v
By definition, a motion 1s rigid if and only if CAB(E’t-i'-r)

is independent of T. But this is the only term on the right-
hand side of (4.12) which depends on T3 hence, a necessary
and sufficient condition that a motion be locally rigid at X is

that the relative strain measure CT(Et) be independent of T



LECTURE V
MASS, STRESS, ENERGY, ENTROPY, AND

MOMENTUM

Wit will be remembered that Faraday, when studying
the curvature of lines of force in electrostatic fields,
had noticed an apparent tendency of adjacent lines to re-
pel each other, as if each tube of force were inherently
disposed to distend laterally; and that in addition to this
repellent or diverging force in the transverse direction,
he supposed an attractive or cont;'actile force to be ex-
erted at right angles to it, that is to say, in the direc-
tion of the lines of force."

WwOf the existence of these pressures and tensions
Maxwell was fully persuaded; and he determined analy-
tical expressions suitable to represent them. The ten-
sion along the lines of force must be supposed to mani-
tain the pondermotive force which acts on the conductor
on which the lines of force terminates and it may there-
fore be measured (in the system of units we are now

using) by the force which is exerted on unit area of the



conductor, i.e., €E2/8 or DE/& The pressure at
right angles to the lines of force must then be determined
so as to satisfy the condition that the aether is to be in
equilibrium. "

E. T. Whittaker

V.1l. INTRODUCTORY REMARKS

Nothing considered thus far depends in any way upon
definitions or properties of stress, energy, entropy, or
momentum. The electromagnetic field and the gravitational
field have been introduced as densities of physical guantities
called magnetic flux and gravity. They have not been defined
in the traditional way in terms of the force exerted on charge,
current, and mass; nor have any other ""mechanical™ attributes
been assigned them. The principles of balance of energy,
momentum, and angular momentum, and the elementary con-
cepts of force and inertia which suffice as a suitable frame-
work for classical continuum mechanics do not extend in a
completely natural way to the more general space-time mani-
folds considered here. We seek a system of mechanical prin-

ciples sufficiently general to include Einstein's relation between



the curvature of space-time and the distribution of energy and
momentum, yet specific enough to embrace a theory of motion
and entropy production in a continuum interacting with an

electromagnetic field.

V. 2. INERTIAL MASS

Recall that action is a 4-cochain in g and that

4
AE" A) = fmgg) (2.1)
~ + —
where p is the density of action.

Let a motion of a material medium %/L be parametrizable
so that we are given a congruence of world-lines by a mapping

fTsMX & —~ £ (2. 2)

T

such that the tangent field £ = th (where t is the parameter)

is everywhere time-like, s °g(é,, é) < 0. Define J by

t

g Vi (2. )
+/-sgl&, £)

phys.dim. J = [T'l] . (2. 4)

It follows from the Jacobi identies that

div(J’lv)= (I7"v) =0 . (2. 5)



Let i denote the dual of the action density p . Then
we define the density of inertial mass p by

-1
p = J P (2. 6)

Let v be the velocity field of a motion of W] . A tensor
field in the world-tube of W is said to be invariant under
the motion if its Lie derivative with respect to v vanishes.
It is said to be absolutely invariant under the motion if its
Lie derivative with respect to any field A v proportional

to the velocity vanishes. If ¢ is an r-form,

£<p = rot{w Ag) ¥+ wATrote (2.7)
W

from which we see that an invariant r-form is absolutely
invariant if and only if

wAoe = 0. (2. 8)
In particular, if a scalar field is invariant under a motion, it
is absolutely invariant under that motion.

LT
Recall that in the previous lecture we showed that a motion

of ’WL was locally rigid about a point X if and only if the in-

duced metric g, were invaria t under the motion. With

these remarks in mind we come to the important concept of



the constitutive relation for the inertial mass of a continuous
medium. We consider a class of material media for which
the value of the inertial mass §>(§) at a given event is given
by

o(£) = Ul gle), VE(E), w(E), X&) (2.9)

where wa , a=1, 2, ..o N is a set of fields in the world-
tube of M called state variables. Different functions U
define different materials of the class. We say that the state
of the material about X in invariant if the motion is rigid and
if £(,0a =0, an.d absolutely invariant if the motion is rigid

and * fwa = 0 for arbitrary X o
Av "

-

A 14. (Principle of Materiél Indifference) The inertial
mass is invariant under the motion whenever the state

is invariant under the motion.

Replacement Theorems If the constitutive function U for
the inertial mass satisfies the principle of material indifference
and invariance of each of the state variables e implies

its absolute invariance, then

T

- t
U(g, VI, oy X) =U( g, Vi

, W, X). (2.10)
a

W~

-

-
Lot



Proofs Set g = g, + r VT®V and insert this value
for g in U. The replacement theorem is equivalent to the
assertion that the resulting value of U is independent of the

value of r. Assuming, as we do, that U is differentiable

in g,Jtﬁis is equivalent to the condition

du _ 28U 1 vﬁT =0 . (2.11)

a

dr 0 ga‘3

But if U satisfies the principle of material indifference, then

20 £, =0 (2.12)
Bgﬁ)\v op

for arbitrary M\ if v is.the velocity field of a locally rigid

motion. But for a rigid motion we have

_ 1 f
i?gaﬂ = 2rpavg PPN vy 0

where a are the components of the acceleration. Choosing

N =0 ata point and X o proportional to VZ

4

at that point,

one sees that (2.12) is sufficient for the replacement of g by

+

But g, is uniquely determined by the gradient of f° and

fa 1

Ap =S (gv)aﬁ f A B which

the Born strain measures C

L



proves the corollary: Every constitutive relation of the type

(2. 9) is equivalent to one of the form

o(E) = UKC(E) , Vi(6), eo,(8)) (2.18)

provided that invariance of the state variables wa implies

their absolute invariance.

V. 3. ENTROPY AND THE CLAUSIUS-DUHEM INEQUALITY
Alongside the four basic physical quantities, magnetic
flux, electric charge, gravity, and action we now set a fifth

and last called entropy.

A 152 Entropy is a continuous 4-cochain in event-space.

4
S(E”, 8) = Jc(§) : (3.1)
~ ’ ~
where o is the entropy field and S is the unit of

entropy.
phys. dim. ¢ = [s] ,
and

s’ ) sigt5) > o (3. 2)

if 84 and £'4 are similarly oriented.



Let a parametrized motion of a continuous medium be
. , . 4 4 4
given and consider the entropy S(E (T),5) of E£7(r)= TT(& )
4
where E, is a fixed oriented submanifold in the world-tube

of the medium and suppose that the parameter is proper time-.

dS(£4(,T), S)l = S{G =§£ vao - (3.3)
T

dr =0 v 4
4 0
£ E

Then

Define the entropy flux relative to the material, q/Q and

the rate of production of entropy @/9 by setting

}v/\o* = % Jo + f§/e . (3.4)

Yo Yo

where 6 $ 0 is a factor later to be identified with the absolute

A
temperature. It is assumed that h. v =0, and

phys. dim. (% ) = phys. dime. ( = [S?—_l]o (3.5)

1N m“e.;

Thus the sign of the entropy produced in £ defined by

INTA J @( (3. 6)

depends on the sign of the unlt of entropy, the orientation of

4
5 , and the direction of time, since the definition of @/6

4
compares the entropy of a set of events (. and a set f/ (r)

~

NS



obtained from 54 by translation along the world-lines of a

material medium. The sign of the product

ax(gh, sP17h = seh malet st (3.7)

4
however, is independent of the orientation of & ~ and the

unit of entropy.

A 165 (The Clausius-Duhem Inequality). For every
E 4 , either

2 -
axg?, s 1 =0,

(3. 8)

or,

ax(£% g Th< 0
depending only on the direction of the time step dTt in the
definition of the rate of production of entropy-.

None of our assumptions before (3. 8) allow one to dis~-
tinguish between past and future events along a given world-
line. But the Clausius-Duhem inequality provides this dis-
tinction if the inequality sign in (3. 8) holds for at least one
(i 40 The Clausius-Duhem inequality asserts that the entropy
of a set of events & 4(1’) obtained by advancing the set & 4

into the future along the world-lines of a material medium is

4
never less that the entropy of 8 plus whatever entropy has



flowed across the lateral boundary of the corresponding segment

of the world-tube.

V. 4. SOME DIFFERENTIAL INDENTITIES
Before considering equations of motion we digress to
record some results which will ease the formal manipulations.
Let ¢t , a=1, 2, ... N denote the ordered set of
components in some coordinate system of the manifold of a
differentiable tensor field, or the components of a set of such
fields in the manifold. Then the components of the Lie deri-

vative of the set of fields with respect to the vector field w

(a)

with components wa are given in terms of the t and
. N (a)
the partial derivatives of the t ° by
' )E t(a) = W t(a) o + F(a) P t(b) W 8 (4.1)
W ! (b) a !

where a comma followed by an index denotes partial differen=~

tiation with respect to the corresponding coordinate. The
(a)a

{(b)p
All partial derivatives in the formula (4.1) may be replaced by

coefficients F

the corresponding covariant derivatives and the formula re-

mains true. Thus we also have

are constants independent of the coordinates.



£t(a) oW t(a)oaJr plap () waoﬁ, (4. 2)
. ' (bl '

where a semi~colon denotes covariant differentiation. The

equivalence of (4. 1) and (4. 2) follows from

da)  _ (e plae (b o §
g a ’0‘ (b)p: o‘ﬁ £
(4. 3)
a a a e
W = + W .
‘”3 :[‘3 {P’pg
In particular,
| _ e ‘s
i Bap 7 Bapsp V(asp)
W
= 2 , 4, 4
¥ (a3 ) (4. 4)
since gaﬁv " =0. The Lie derivative and the partial
derivative commutes:
{ da . (a)
gy =t £ ) o (4. 5)
W W

Suppose fT: mx@e E is a parametrized motion of a
continuous medium. Then v fT has components which we

now denote by F,a A and §a . Now suppose that

fTA: MW O —> E (4. 6)

ts (



is a one-parameter family of .such motions of M such that

f]:\ is smooth in all its arguments. Set

T
wo = 91 o (4. 7)

o A
Then we may assert that

%

T
(Vf];) = 9—(—%@—) + f(VfT) =0, (4. 8)
)

w

or, in terms of components,

* o

. a .

£ = 88 ﬁ £ =0 . (4. 9)
P w

Consider next a 4-form » in event-space and its

4
integral over an oriented £ ~ in 6 .

NEY = f v (4.10)
£ 4
The submanifold may be taken as small as one pleases so that,

in particular, let us assume that it lies entirely within a single
A
coordinate patch. Let J/ denote the dual of Y . Suppose

A
that the value . Y/(£) in any coordinate system is given



= ey ( (& (€), -..)(411
V (£) 8,660 Eag, y &) 815 £) ) (4.11)
where K is a smooth function of its arguments independent
of the coordinate system and € =t 1 depending on the
orientation of the basis vectors. The functions K = 4/-g R,
K’ =g r*P R
and R '
a

pap

of functions K satisfying our hypotheses. We show that for

= Mo = tap
6’ where RaB R}.LO.(S ., R g Raﬁ’

is the curvature tensor of go.[?) are examples
every such function one has the identity

= 0 (4.12)
Sgas 3P

Y N (2},’ >+ (523—» — e (4.13)
o g Uy Ogpei

is the Hamiltonian or Lagrangian derivative of %)/ with respect

to g . This well-known and oft quoted theorem may be
proved as follows. Let 'I‘Ts 5——3 6 be any one-parameter

family of point transformations such that TO =1 and let

Q

w o= 8?(§,T)/3T

N =3 y/ =f£7/

w

T=0. Let TT(54)=54;. Then

4 T=0 5:



0
&

>
X

Thus N vanishes whenever w = 0 on the boundary 854 of the

4
region 5 . But this implies that

2 f q,,-
; M A
£
4
if w vanishes on the boundary of £ together with its
derivatives up to order (m-1) , where m is the order of the
highest derivative of g appearing in the function K .

Using (4. 4) we then see that

54f fﬁ i) f [ésl ) (SW
f(sgg);) Wi =

and this must hold for every vector eld w in (_C/ which

) "]

P (4.14)

vanishes with its derivatives up to order (m-1) on the boundary-

We then conclude that we must have (4. 12) at each interior

4
point of E , which proves the assertion.

(59
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V. 5. EQUATIONS OF MOTION OF A CONTINUOUS MEDIUM
Recall that in classical mechanics the equations of motion

of systems with a finite number of degrees of freedom with

(a)

generalized coordinates q & , a= 1, 2, ... N may be stated

in the form tz

Gdet

!

1]

(5.1)

1,8
s a . . . o
for variations 6q( ) consistent with the constraints; for all

(a)

variations ©6q " fa specified class. The coefficients Q(a)
are the generalized forces. The specification of a particular
dyhamical system consists in laying down constitutive relations
for the kinetic energy T and the generalized forces in terms

(a)

of the coordinates ¢q & and their time derivatives. Here we
shall propose Lagrange equations for a continuous medium
in a general space-time manifold tor which, at each event,
we are given a cone ot directions g(§) that varies smoothly
from point to point.

Consider the action ot a segment of a world-tube of the

material medium %,

INIAWSE f wa) (5.1)
54



[t

and suppose that the motion of W is given by fgs %)‘ 6"% 5
where f}: %x(ﬁyg is a one-parameter family of neighboring

comparison motions of % . Let

w = grad) fT . (5. 2)
Suppose that
p=Jop . (5. 3)
where the inertial mass 9 is given by a constitutive relation
of the form
O =Ulgyg & oo 5 L0,y s XD (5. 4)
The generalization to materials for which U might depend

"

on higher derivatives of f and the metric tensor is not too
different from the special case (5. 4). More definite and special
theories follow on specific choices for the state variables w(a),
but for the moment we are interested in exposing the common
structure of all such dynamical systems. Let g)\(g) =

g(€, )\ ) and NS co(a)(g, A ) be fields such that g(£,0) =

(). Let

gl€) and W (£, 0) = W\

= 98
58 T —Fl 50, = 2% (5. 5)
24 Ja=o 8A  [1=0

and call these quantities the variations of g and U'J(a)”



For each comparison state and motion of m , the function

A)\=A(£A’ A):’f ["'( g)\/ V'g A))\>

is differentiable with respect to the parameter /'\ . Its de-

rivative is given by

* * R
=fp =/[-—‘?-E—gGL +—?—’ico()] (5.7)
£ %8ap “a)

where we have used the identities (4. 8), and the superposed

star denotes the linear operator 8/ o\t f .
W of
In view of (5. 7) we define the generalized forces Q and

Q(az by setting

« ¥
5A = A, f[—, . Q( oyl - (5:8)

/ \

This is the Lagrange equatlon for the dynamical system with

constitutive equation (5. 4).

{4



The Lagrange equation (5. 8) is a variational equation to
be satisfied for some specified class of variations (w, 0g, 6w(a))
of the motion, the metric, and the state variables. As in the
case of point mechanics, we adopt the view that constitutive
equations for the generalized forces Qaﬁ and Q(a) expressing
these quantities as functions or functionals of the motion and
state variables in addition to the constitutive relation for the
inertial mass are required to specify the dynamical system.
What we have before us is merely a framewérk into which one
can fit most every more definite special case of a theory of
motion and deformation of a continuous medium. This remains
to be demonstrated by examples. The nature of the system
and of the special theory depends on the physical and geometrical
properties assigned the state variables w(a) and upon the de-
tailed nature of the constitutive relations for the generalized
forces. But we shall assume that in every special case, these
constitutive relations are consistent with

A £7: (The Principle of Local Determinism) The value of

(3' Q(a)

a
each generalized force (Q } at an event "; is



Yy

uniquely determined by the values of the fields g, VfT,

and at events £' not later than £ belonging to the

(a)

same world line.

V. 6. THE ELECTROMAGNETIC AND GRAVITATIONAL
STRESS-ENERGY-MOMENTUM TENSORS
As in the case of the mechanics of systems with finite
degrees of freedom, part or all of the generalized forces
may possess a potential. What we do now is essentially to
classify the generalized forces into types; a given generalized
force is considered the sum of forces of various types. Of
these special types of forces, we consider first electromag-
netic forces.

Consider the scalar function

»~ _ k
M) za VUE (¢, ¢)
(6.1)

hys. dim. X = [A ]

phys. dim. /u(‘f)-— Al
where ( ()0, P ) denotes the quadratic form in the space of
2-covectors defined by the metric field g (and gT) as in 85
of the preliminaries. The constant k with phys. dim. [Q@J]

is the constant appearing in the aether tensor K of (IL. 2) so
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that -k I= K, and a isthe fine structure constant .

phys. dim. a = Q @ é-ll . (6. 2)

A
The function p“?)of the fields g and ¢ is the dual of a
4-form p,( ) whose integral over an oriented 64 is the

electromagnetic action of that set. The symmetric tensor

field defined by

Sy _ (6. 3)

ap

T =
(¢)
()0 6gc“3

is the electromagnetic stress-energy-momentum tensor.

The covariant divergence of the electromagnetic stress-
energy-momentum tensor yields the electromagnetic Poynting
identity

a - af =l af '\y
= T e T2 & X Pey o OF

Its value is the generalized Lorentz force fc&f) which is

a measure of the rate at which electromagnetic energy and
momentum is converted to other forms of energy and momen-
tume.

In analogy with the above, we define the density of

A
gravitational field action H(Y) by

?-"(Y) = % a' '\[’E1 (YaY) ° (6. 5)

(4T



The gravitational constant a' has

-1

phys. dim. a' = [C_}_____ 1. (6. 6)

The gravitational stress-energy-momentum tensor is defined

by N

P = 2 ORy) (6.7)

(v) Ggaﬁ

and the gravitational Poynting identity is

a _ P - 2 tap
P T Ty T RE T Yo (6. 8)

a
The generalized gravitational force f(Y) is a measure of
the rate at which gravitational field energy and momentum is

converted into other forms of energy and momentum.

Finally, let
A = KD ,‘,_ 6
}.L(g) a g K(gaﬁs gaB’Y, gaﬁ,YS, © e 0 x o 9)

where K is a scalar function of the metric tensor and its
derivatives having phys. dim. @"E] and independent of any
other field quantities. We call /}\L(g) the action of curvature.
We assume that /;L(g) has phys. dim. [i:] so that the relativity
constant a'* has

phys. dim. a* = [G] (6.10)

Later to exhibit Einstein's theory of motion and gravitation
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as a special case one chooses K = R , where R is the
scalar curvature. But whatever choice be made for the
function K one has the Bianchi identity (or a special case

of that identity)

@ ™ Hen s O
(6. 11)
af 6/11
T(g) = 2 (g) ’
e} gaﬁ

satisfied by the Einstein stress-energy-momentum tensor

af
T(g) )



V. 7. THE INTRINSIC STRESS-ENERGY-MOMENTUM TENSOR
It has been assumed that the action density /;l is
of the form
A ¢ (7.1)
where the density of inerfial mass ? satisfies the principle

of material indifference and J is defined in terms of the

metric field and the motion of a material medium by

f
J= det V£ . (7. 2)

~/-sgl Z_T“,Zf] )

The intrinsic stress-energy-momentum tensor is defined by

b ., b
T(}-L) 2 : . (7. 3)
go.ﬁ

Substituting from (7.1) for [i one gets

u.ﬁz- a P -1 9P \
T(N) spv v + ZJ.agap (7. 4)

=5 vcL vp + Ta‘3
(e)

a
where T(eﬁ) is the elastic stress tensor. If the state variables

w

(a)

velocity vector v is a characteristic direction of the elastic

are such that the replacement theorem applies, then the

stress tensor and

of T _
T(e)va—O

. (7.5)

{3



Hence, the velocity vector is a characteristic vector of the

intrinsic stress-energy-momentum tensor,

A a

ap T _ ‘
T(P) v{3 = ROV (7. 6)

and the proper value is precisely the action density itself.

V. 8. SOME FURTHER CONSTITUTIVE RELATIONS AND THE
ENTROPY EQUATION
a

It T(b) » b=lp, VARIRE g) is a stress-energy-

momentum tensor, we call

" - ap T T
e(b) = g T(b) Vo Vﬂ (8.1)

the density of relative energy of the corresponding type. Thus
~ ~ e s . ~ . .

€ (1) = W 1is the intrinsic relative energy, ¢ ((f’) is the relative
electromagnetic energy density, etc. The adjective "relative"
is used because the definition of the energy density depends on
the velocity of matter at that event, and such energy (except
in the case of the intrinsic energy) is a relative quantity in

the sense that it depends upon the motion.

Now set

ap _ . ap ap , oB , oo
V=Tt Ty T R@ B2



which serves to define the dissipative stress-momentum tensor,

ap

%a)°

A 183 The relative dissipative energy vanishes.

Q(‘f) vz v}g = 0. (8. 3)

Assumption A 18 implies that if we define a complete stress-

energy-momentum tensor T Dby

T= T(p) e

= T + T + T + T + 8. 4
T % T O e % Wl € (8. 4)
then the complete relative energy is given by
A Q,B T ’l‘ A A~ A ~
€ = T = + € + e + 8.5
ST Ve Vg Bt ) Ty Ty B

Thus according to A 18 the only forms of relative energy

are intrinsic, electromagnetic, gravitational, and metrical.
Consider now the case where one of the state variables

w(a) in the constitutive function for the inertial mass is the

entropy field & . We now write the constitutive relation

(2. 9) in the form

= I e e, T, @y ) - (8. 6)

—~ A
Alternatively, and preferably, let g = JO ° be the



absolute scalar measure of entropy and set

-1

b= 0w, vl T e, (8. 6%)

The Lagrange equation {5. 8) takes the more explicit form

] ap * e | (a) ¥
6A = 5[9 =-][-—2—Q gaﬁ-J-QG‘-l-Qa © iy
£4 64 (8.7)
where 6 is the absolute temperature and
phys. dim. 8 = [A i"l] . (8. 7)

According to A 18, the dissipative stress-momentum

tensor has a unique decomposition of the form

Q?E) = s?s) + s P+ P o) (8. 8)
where S(ap vJr = 0 is the dissipative stress ,and n' = QupVT ,
d) B (ay B
havg =0, is the heat flux.

Suppose now that the Lagrange equation must hold for

arbitrary variations of the class

%
ﬁgaﬁ =0 , w(a‘) =0 = 6w(a') + £w(a,) - (8.10)
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Necessary conditions are

Taﬁoﬁ;-_-o , 9 =_a_£ o
! LYo

Substituting for T and Q(d) from (8. 3) and (8. 9) in (8. 11)1

(8.11)

one gets
a + a DC‘V
—S}LV'i’SJ PV +I]€e),ﬁ (50)4’ (_Y)
T A L A iy (8.12)

(d)s B 3p

a
where a superposed dot denotes ( ) oY (i. e. , differentiation
»

with respect to proper-time along a world-line of the motion).

The equation

TP

Va ip =0 , (8.13)

a consequence of (8.11) ,Will be called the entropy equation.

Using vTa"V(1 =0, (i) T“ T( ‘3) ‘I = 0, we find that the

entropy equation can be put in the form

(&Va-l- _._.11_..) = ._}'.[Su'ﬁ T

a
6 '« B (d)Yasm‘h“nfgb,a

a-f a a T Bp
+h - f(g))UxT - f(v) v, - o )ém ,)](8 14)
al

Comparing this result with equation (3. 4) we see that the

dissipation function § is given by



—§ = Soig) V(Z.,B) ~h" (1n‘9[ ),(1 + sha VZ
ot o 1 oL
“HerYe T Ve Lo (s.19

Bw(a,) v

The Clausius-Duhem inequality and this expression for
the dissipation function serve as guides in the construction
of special theories.

N . . . a T

The dissipation function contains the term -~ f((?) Vo
which represents the rate at which electromagnetic field
energy is converted to other forms of energy. Depending on
the nature of the constitutive relations for the charge-current
field, some of this energy appears as heat energy so that this
term is related to the so-called Joule heat. The dissipation
function (8. 15) contains also the analogous but less familiar
term

R (8. 16)

(y) o
where \F is a gravitational potentiale Thus we may conclude
that in the rigid motion of a non-heat conducting, electrically

neutral body ( f(“f) = h = 0) entropy is produced at the

rate

d=-apy o 2 Lo . . (8.17)
Bco(al)v (a')
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Thus if the gravitational constant a' # 0, entropy is pro-
duced or absorbed by a particle in every motion with invariant
state ( '£ co(a') = 0) in which that particle does not move on
v
a surface of constant gravitational potential. In Einstein's
theory of gravitation a' =0, so that these remarks do not
apply. An alternative when it is not assqmed that a' = 0,
is to assume that one of the state variables w(d,) is the
gravitational potential so that the inertial mass of a particle
depends on the gravitational pofential which it experiences.
Moreover, one can adjust this dependence in such a way that
no entropy is produced or absorbed in a rigid motion of the
medium in which all the other state variablés are invariant.
This requires that we set

~

ar - 2B
oY

the general solution of which is

AA —at
b= opge

= 0, (8.18)

, (8.19)

where ;\LO is independent of the gravitational potential. If
(8.19) be assumed, the equations of motion (8.12) with all
forces set equal to zero except inertial and gravitational

forces assume the special form



s;ra=a'(gTaﬁL4Jp+s\%/va). (8. 20)
’

In this case, every material point moves on an orbit indepen-~
dent of its mass. If it be further assumed that 6 is an
affine space free of curvature, the orbits determined by

(8. 20) when a' \P << 1 lie very close to the classical
Newtonian orbits. The perihelia, rather than advancing as

in Einstein's theory, recess slowly at a somewhat lesser
amount per revolution. Of course, nothing which has been
assumed in the general theory requires either that a'%0,

or that the curvature of event-space vanish.

V. 9. EINSTEIN'S FIELD EQUATIONS
A necessary and sufficient condition that the Lagrange
equation (8. 7) hold for unrestricted variations of the metric
field is
T=20 (9.1)

or, equivalently,

ap _ af ap ap ap
-T(g) Tm) + 'I‘((f) + T(V)+Q(d) (9. 2)

1f one choose for the function %, . the function a™-f- (R + C),
(g) g



where C is the cosmical constant, phys.dim.C = [g_{};]‘] ,
then

1 = e/ (R - S e R0 (03
and (9. 2) becomes Einstein's relation between the curvature
of space-time and the distribution of stress, energy, and
momentum. It is of course assumed in Einstein's theory
that a"# 0, but it is also assumed that what we have called
the gravitational constant a' to which T(Y) is proportional
is equal zero. Under this assumption, the numerical value
of the relativity constant can be so chosen that the geodesics

of a singular solution of T(g) = 0 lie close to the classical

orbits of electrically neutral point particles. In Einstein's
theory of gravitation, what we have called the gravitational
field y exerts no force on matter and does not influence its
motion in any way-

In the special theory of relativity, it is assumed a priori
that event~space is affine and that the components of the metrical
field (the light cone) are constant in an affine coordinate system
of 5 . Thus, in special relativity, as in classical mechanics,
the lfvmetrical and temporal structure of the manifold of events

is laid down as a postulate at the outset and not affected in any way




by the distribution of stress, energy, and momentum. The
Lagrange equation holds only for variations consistent with
the constraint & g = 0, which is natural from the viewpoint
of the special theory. Thus equation (9.1) does not apply in
the special theory. Both the general and the special theory
of relativity are embraced as special cases of our general

assumptions thus far,



LECTURE VI

ELECTRODYNAMICS OF DIELECTRIC MEDIA

U1t was the great merit of H. A. Lorentz that he
brought about a change here in a convincing fashion
In principle, a field exists, according to him, only
in empty space. Matter-considered as atoms-is
the only seat of electric charges; between the material
particles there is empty space, the seat of the electro-
magnetic field, which is created by the position and
velocity of the point charges which are located on the
material particles. Dielectricity, conductivity, etc.,
are determined exclusively by the type of mechanical
tie connecting the particles, of which the bodies consist.
The particle-charges create the field, which, on the
other hand, exerts forces upon the charge of the par-
ticles, thus determining the motion of the latter according
to Newton's law of motion. If one compares this with
Newton's system, the change consists in this: action at
a distance is replaced by the field, which thus also de-

scribes the radiation. Gravitation is usually not taken
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into account because of its relative smallness; its con-
sideration, however, was always possible by means of
the enrichment of the structure of the field; i. e., ex~
pansion of Maxwell's law of the field. The physicist of
the present generation regards the point of view achieved
by Lorentz as the only possible one; at that time, how-
ever, it was a surprizing and audacious step, without

which the later development would not have been possible. '

A. Einstein

V.I. INTRODUCTORY REMARKS

It is significant to the historical development of the
principle of relativity that Einstein's famous paper of
1905 was entitled, "Elektrodynamik bewegter Korper®.
The lectures to this point represent an attempt to sum-
marize by a small number of explicit assumptions, a
set of general physical principles common to a large
class of more special and specific mathematical theories
of the electromagnetic field in material media and of the

consequent motion and deformation of such media. These



embrace and are consistent with a vast variety of dif-
ferent theories of matter, motion, gravitation, and
electromagnetism. They represent but a framework

into which one can fit more specific theories characterized
by different descriptions of the state of a medium and by
different constitutive relations relating that state to the
inertial mass and the generalized forces. One of the
earliest class of problems in the new relativity mechanics
to be attacked by Einstein, Minkowski, Abraham, Bateman,
and many others, was the construction of a theory of the
electromagnetic field in a moving and deforming medium

characterized in part by linear constitutive relations

D

e~ E,
(L. 1)
B= p H,

for the corresponding medium at rest in some inertial
Lorentz frame. Maxwell, Lorentz, Voigt, and others
had demonstrated how linear constitutive relations like
(1. 1) and linear generalizations of them which include
the effects of small deformation could account with ele-
gance and simplicity for many of the known optical and

electro-mechanical properties of solids and fluids. This

1o



early work on the construction of “relativistic'® counterparts

of known classical constitutive relations like (1. 1) for stationary
media to the‘case of moving and deformable media, and the
controversy surrounding the apparently contradictory results
of different investigators is described in the excellent article
by Pauli. It is difficult to perceive in this early work general
physical principles not conditioned by the linearity of the under-
lying classical constitutive relations under consideration and
which could be relied upon to guide the construction of the
corresponding theory of motion of dielectric media in which

the polarization is not a linear function of the electromagnetic
fields Thus we have abandoned these earlier methods of
reasoning and in this concluding lecture attempt to show how
the general principles established thus far can guide the con-
struction and physical interpretation of a more definite special
theory of deformable dielectric media which does not rest upon

the concept of absolute time and Euclidean space.

V. 2. NON-MAGNETIC PERFECT DIELECTRICS
In ordinary terms, by a perfect dielectric one means a

perfect electrical insulator. More formally now, we shall

e



define a perfect dielectric as follows. It is a material medium
in the sense used in the previous lectures. Let v be the
velocity of the medium, and let 7 be a charge potential in
the world-tube of the medium. Thus the charge of any
oriented set & 3 of events experienced by points of the di-

electric medium is given by

3

c(&”, Q) = ﬁ( Q) (2.1)
1o

In a perfect dielectric medium, there exists a charge-potential

7 such that
nAv = 0. (2. 2)
If % denotes the dual of Y then (2. 2) is equivalent to

mMvyv = 0. (2. 3)
This equation asserts that the velocity vector at each event is
N
a divisor of a charge-potential. Thus there exists a field P
such that
'
n = Pvv o (2. 4)
A
Now P is not uniquely determined by n and Vv and the

~

relation (2. 4) since one may add to any solution of (2. 4) for P



a term proportional to v and obtain another solution. There

is only one solution, however, such that

P°V = O ’ (205)

and we shall assume as part of the definition of the polarization

field P that it satisfies (2. 5).

It should be remarked that according to A6 , K(o¢),
where K is the aether tensor and ¢ is the electromagnetic
field, is also a charge potential, whether matter experiences
the events in question or not. This is the Lorentz viewpoint.

Thus we also have

CE Q= ¢ KipQ - (2. 6)
o>
But the potential of charge, it must be remembered, is not
uniquely determined by the distribution of charge. - If this
were true, then one would infer that K(¢) = dual( Pv v),
and this is not implied at all by what has been assumed above.

Rather, one can only infer that

§K(¢) = jgduaui‘v vv) o, (2. 7)

(¢3
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for every submanifold of events E 3 experienced by the
material points of a perfect dielectric. Assuming that K(g)

and P V v are regular forms, (2.7) is equivalent to

rot[ K(¢) ] = rot[ dual(Pvv)], (2.8)
or, taking the dual of this equation,
div(K(¢)] = div( Pvv) , (2.8')

which we can also write in the form

divD=0 , D= K(¢)+ vv1'5° (2. 9)
Equation (2. 9) is one pair of Maxwell's equations relating
the charge, current, electric, and magnetic fields in a per-
fect dielectric medium.
One sees also from the above that the dual, )2 , of the

charge-current field in a dielectric has the special form

I ”~ Q
x=~(divP}) v + P (2.10)

o

Fal ~
= -£ P =~ We call, -divP , the density of polarization
M 9
charge or bound charge, and P , the current of polarization.

where

Note that (2. 10) does not always correspond to a decomposition

A
of ¥ into its components along v and normal to v since

o
0 ~  F ~
P VT= P vT -P"VT

= - P oa , (2.12)
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of

where a = v ' is the acceleration. Thus the current of
polarization in an accelerated medium is not always perpen-
dicular to the velocity as is the polarization.

We next assume for this special theory of dielectrics that
the inertial mass 53 = J of a simple dielectric medium is a
function

P = Ulg, vit, o=, P, X) . (2.13)
In words, the inertial mass is a function of the metric field,
the deformatiqn gradient, the entropy, and the polarization.
By this assumption one excludes any consideration of many
other aspects of dielectrics which might be considered in a
more general theory such as, for example, strain gradient
effects, or diffusion.

The state variables O and P do not have the property
required in the replacement theorem of Lecture V; viz.,
that their invariance under the motionimplies their absolute
invariance. For this reason, we replace the state variables
o and P, which appear most natural in the first instance,

by the scalar measures of entropy and polarization defined by

Py

o =30 (2. 14)

m =J Vi-P . (2.15)
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In terms of components relative to an arbitrary system of

coordinates about X inm and £ in 6, this last equation

reads
A A
it = 5gx* P . (2.16)
, a
. A . . . :
Since P v Q- 0, this equation has a unique solution
Aa -1 a B A
P = P In 2.
J v B 3 A (2.17)

where PV = I1-s5vQ® vT is the projection of V4(§) onto
V3(§, v)e Thus 1/5 is a function of the polarization measures
I, the metric, and the deformation gradient. Also, 6’ is a
function of the scalar entropy mea»sure (en , the metric, and
the deformation gradient. Therefore, the constitutive relation
(2.13) is equivalent to one of the form

P =Uxg, va,a—, o, X) (2.18)
The polarization measure II is the dual of a 2-form in the
material manifold WL , but with respect to 6 it may be
viewed as a set of O-forms, or scalar fields in the world-tube
of m o Therefore, each of the state variables in the con-
stitutive reiation (2.18) for the inertial mass is absolutely in-

variant under the motion of m if it is invariant,and the re-

placement theorem applies. Thus if the principle of material
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indifference is assumed, every constitutive relation for the

inertial mass is equivalent to one of the form

Q - uc, vl ,n,5, X (2.19)
It can be shown in several ways now that this function U
T

must be independent of Vf'. One way is as follows. Since

o, C, II , and 53 are scalar fields in one has

it ¢ =w'saq, a={o, C, T, 8}  (220)

a
Consider then the vector fields W(QF) =2 §r s Where
r A X
X =(X ", ), T the parameter of the motion. One
then has
= GO = 99
é q W(I‘) Baq BXT . (2. 21)
(T)

But

h’/’fT = 0, (2.22)

W .
so that computing —a—% in each of two alternative ways one

X
gets
U
fp-20 [ ¢ +20 {p
W 0C w AB 8HA w
(r) AB  (I) (r)
U ~ .
+ 0 5 + BUA _£ XA (2. 23)
80" w 80X w

() (1)
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A
_ U 8C,., 31 anr
8C, 5 oyl O 8X
2.a ~
L, 80U 8% , 98U 8l
0 ~
5t  8xX ax' 87 ox’
sU  ax"
AT T
X" 8X

All terms but one in the last equality cancel each other and

we are left with the condition

ouU 0 2§ , ‘(20-24)

0t® axToxt
1 O

which must hold for all motions and coordinate systems. But

this implies that the function U is independent of VfT° Thus

© = ulc,n, &, x. (2. 25)
Consider next the Lagrange equation (8. 7) for a perfect
dielectric and denote the generalized force conjugate to the
polarization measure II by 8/&, , where a is the fine
structure constant. Suppose that the Lagrange equation holds

for arbitrary variations of the class

*
g =0 , o = 0. (2. 26)



This will imply that

op  _ 1 8
2B = (=) (2. 27)
81l a A

The electromagnetic energy-momentum vector in a perfect
dielectric has the special form
o

£ =(1/a) "’ap[ Jdiv B) vP + PP (2. 28)

On taking the Lie derivative of (2.15) with respect to v one gets

°

the following relation between the current of polarization and Il .

a a A3 -1 a .p A
6 PVBE,’AH o (2.29)

‘gro
+
wn
<
o
g
¥
[

Consider next the dissipation function (8.15) for the case
in hand. Using the results (2. 27), (2. 28), and (2. 29) just es-
tablished, we find that the dissipation function can be expressed

in the form

@ = ScLB Vzaiﬁ) - n* (lnIQ‘)’a +sh® a,

+(1/a) 8<d)A“A , (2. 30)

where the dissipative-rotary component 8(d) of the general-

ized force conjugate to the polarization is given by

- -1 ,a §]
5(d)A— 8A - J §’A¢aﬁv . (2. 31)



The electromotive intensity at a point in the world-tube

of the medium is defined by

_ 8
E bop ¥ - (2. 32)
v
Since
" A A aa
II = J X a P (2. 33)

we find that the polarization term in the dissipation function

can be expressed in the alternative form

o o
8(d)AHA= 8(d)aPa, (2. 34)
where,
8(d)a = 80. - Ea (2. 35)
v
ot d,
Now let

A= sy b ﬁ(d)'g (2. 36)

denote the set of fields whose values determine the rate of

entropy production in the medium. The constitutive relations

for dielectrics consist in the function U whose value determine

the inertial mass, and the relations giving the values A (£)



at each event in the world-tube ofm/ in terms of the motion
and state of the medium. According to the principle of local
determinism, A [£(X)]is a functional of the values of the
field variables ( g, VfT, 0", P) at events £'(X) not later
than £(X). Whatever may be the explicit form of these con-~-
stitutive relations, they must be consistent with the condition
d>o.
The simplest constitutive relation for A consistent with

this Clausius-Duhem inequality is

A =o0. (2. 36)
These are the constitutive relations for a perfectly elastic,
thermal insulator, which is transparent, optically passive,
and a perfect electrical insulator.- The next simplest class of
dielectrics sharefall these properties except that they may be
optically active. The constitutive relations for this class are

of the form

o]
8((‘1) = I\A% ? (2.. 38

where I’ is a 2-form called the gyration coefficient whose

value at each event is a function of the values of the deformation



gradient and electromagnetic field at that event. This class
of media is non-dissipative in the sense that d =o.

If a2 Lorentz frame exists such that = diag(1, 1,1, -1)

gaﬁ

in appropriate units, and if the velocity of the medium relative

to this frame as measured by the first three components vl,
i=1, 2, 3 of the velocity veg,tor ‘is. every small compared
2 b b,
with unity; i.e., V = ZULU <<1 , in the units chosen,
i=l

and if the rate of change of the inertial mass (internal energy)

is everywhere small in the sense that

79l vt
the theory of motion of dielectrics and of the electromagnetic
field in them based on (2. 38) is indistinguishable for all
practical purposes from the classical theory of such media
described in "A dynamical theory of elastic dielectrics™.
Thus it is unnecessary to repeat here the way in which simple
solutions or approximate solutions of the system of equations
proposed here can be constructed and interpreted physically
in terms of known qualitative electromagnetic and electro-

mechanical properties of elastic dielectrics. The present

treatment is superior to the one given earlier which relies on

[



|

the concept and properties of absolute time. Whenever it is
necessary to treat both inertia and the electromagnetic field
side by side as in the case of the dynamics of dielectrics,

a classical treatment of the former leads inevitably to the
existence of a preferred frame of reference relative to which
the aether is at rest. Such a frame is both Galilean (inertial)
in the classical sense, and a Lorentz frame frorh the point of
view of the electromagnetic equations. All such frames are
at rest relative to one another. While the effects of motion
relative to this class of frames is small in some sense ( an
assumption which must be made for strict logical interpretation
of the classical theory), certainly the relativistic treatment
given here which does not rest on such an hypothesis, can

claim greater simplicity. .
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