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Cosserat continuum model has attracted increasing interest for describing the mechanical behavior of
microstructured solids. Existing formulation of Cosserat continuum model often overlooks chiral effects
that arise from coupling between stretching deformations and the micro-rotation. Here, we introduce an
extended Cosserat model that accounts for such a coupling. We discover the links of the extended model
to the mechanics of granular materials and identify the continuum and grain-scale parameters that are
the source of postulated chirality. The micro-rotation is shown to be related to the coupling of shear
and normal responses of grain-pair interactions. The consequences of this chirality are then explicated
with the aid of numerical examples. Through parametric studies we also demonstrate the possibility
of measuring the effects of this type of chirality in experiments.
1. Introduction

In order to generalize the continuum model for deformable
solids, Cosserat brothers introduced an additional, rotational, kine-
matic degree-of-freedom associated with every continuum mate-
rial point (Cosserat and Cosserat, 1909). The ensuing theory and
its further refinements or modifications are widely known as Cos-
serat continuum theory or micro-polar theory. Over the last cen-
tury, this continuum theory has attracted wide-ranging attention
and has been applied to explain certain size dependent phenomena
exhibited by the so-called ‘‘micro-structured” solids (Altenbach
et al., 2010; Berkache et al., 2019; Eremeyev and Pietraszkiewicz,
2016; Goda et al., 2012). However, the link between the continuum
concept, and the kinematics and energetics at micro-structural
scales, has been characteristically ignored or studied sporadically.

In this work, we focus attention upon the chiral behavior
encoded within Cosserat continua. While chiral effects in Cosserat
elasticity and higher-gradient media has been recognized (see for
example (Lakes, 2001; Auffray et al., 2015), the micro-scale origins
of this effect has been rarely explored. Only in recent years, with
the advent of additive manufacturing and precision laser cutting,
has there been attempt at realizing micro-structures that yield chi-
ral micro-polar or higher-gradient continuum behavior (Frenzel
et al., 2017; Ha et al., 2016; Reasa and Lakes, 2019; Poncelet
et al., 2018; Chen et al., 2014; Liu and Hu, 2016). It is notable, how-
ever, that the key to rational design for achieving the desired
behavior are predictive theories that link the macro-scale behavior
to the micro-structural characteristics. Indeed, the pioneering
work on 2nd and higher gradient theories leading to fabricated
pantographic metamaterials are exemplar of such rational design
(Seppecher et al., 2011; dell’Isola et al., 2018; Alibert et al., 2003;
Abdoul-Anziz and Seppecher, 2018; dell’Isola et al., 2016; Turco
et al., 2018; Andreaus et al., 2018; Barchiesi et al., 2019;
Barchiesi and Placidi, 2017; Spagnuolo et al., 2019).

Towards that end, we investigate in this work the link between
the 2D Cosserat chirality and mechanics of materials with granular
microstructures, in which the relative movements between nearest
grains, irrespective of where the deformation occurs, effectively
describe the deformation occurring in the elastic grains. Such
materials not only span the spectrum from naturally occurring
highly consolidated dense solids formed of particulate precursors
to confined packings of non-cohesive particles as discussed in
(Nejadsadeghi and Misra, 2019), but also include materials that
can be synthesized by specifying granular mechano-morphology.
The response of these materials to imposed mechanical loads char-
acteristically exhibits a range of complex behavior. By manipulat-
ing the microstructure and grain-interactions that can be realized
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using additive manufacturing, we believe it is possible to control
their mechanical behavior. We have recently shown through gran-
ular micromechanics approach (GMA) based micromorphic contin-
uum model (Nejadsadeghi and Misra, 2019; Misra and
Poorsolhjouy, 2016) that particular types of grain-interactions

According to the assumed hypotheses, the expression of the
deformation energy is given as
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can lead to emergent chiral behavior at the macro-scale (Misra
et al., 2020). In particular, we used GMA to obtain closed-form
expressions for elastic constants, which show that grain interac-
tions that include coupling between normal and tangential defor-
mations result in macro-scale chiral behavior for 2D isotropic
granular media. We have then designed such a coupled grain-
interaction for incorporation into 1D physical granular structure.
The GMA predictions have been verified for 1D granular structure
through a range of methods, including physical experiments, dis-
crete granular models, enhanced Timeshenko beam model and
finite element model of fully discretized structure (Misra et al.,
2020; De Angelo et al., 2019). Here, we consider chirality of 2D
Cosserat-like micromorphic continua. We link this chirality to
grain-scale mechanics using GMA. We then give an example of a
granular system in which the desired grain-scale mechanism man-
ifests at the macro-scale due to its micro-mechano-morphology.
We show that macro-scale Cosserat chirality emerges in granular
materials in which additional kinematical descriptors are required
to accurately model the grain relative displacements. Further, we
present results from parametric simulations to expound the effect
of chirality on response at the macro-scale. These efforts are moti-
vated from the view of designing experiments where such effects
could be measured, and the necessity of highlighting the complex
mechanics of materials with granular micro-structures.

2. Continuum model

We consider a Cosserat-like micromorphic continuum whose
kinematic variables are the displacement field u (X , t) and the
i j

skew-symmetric micro-structure rotation tensor w(Xj, t) which

herein reduces to a scalar quantity because a two-dimensional
model is taken into account. Using these kinematic fields – defined
over a bi-dimensional domain – we introduce deformation mea-
sures which are able to describe properly the behavior of the med-
ium. The indices in the subscript take values of 1 and 2
corresponding to the two Cartesian coordinate axes, and the sum-
mation convention over repeated indices (in the subscript) is
implied unless noted otherwise. In particular, we deal with the lin-
earized strain tensor Eij defined, as usual,

Eij ¼ uði;jÞ ¼ 1
2

ui;j þ uj;i
� � ð1Þ

in terms of the components of the gradient of the displacement
(the comma denotes a partial differentiation with respect to the
material coordinates Xi specified by the following index), the
micro-rotation w and the micro-rotation gradient w,j. In order to
complete the description of the considered material, we also intro-
duce some coupling terms which allow us to make provision for
some exchange of energy between the different deformation
mechanisms. Specifically, we want to introduce the micro–macro
coupling term related to the micro–macro relative rotation, i.e.

c ¼ 1
2

u1;2 � u2;1ð Þ � w or eijc ¼ u½i;j� � eijw ð2Þ

where the term u½i;j� is easily recognized as the antisymmetric part of
the gradient of the displacement and, thus, represents the macro
rotation, and eij is 2D Levi-Civita symbol. Furthermore, to consider
the chiral effect, we also take into account a coupling between
the relative micro–macro rotation c and the two stretching defor-
mations E11 and E22.
þa w2
;1 þ w2
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i
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where t is the (out-of-plane) thickness of the body B. Eq. (3) repre-
sents a linear elastic material that is invariant to rotational transfor-
mation, however, does not satisfy the mirror invariance, and hence,
possesses chirality. Such a material yields isotropic classical (Cau-
chy) elasticity and is said to belong to symmetry class [SO(2)] and
can be termed as hemitropic (Spencer, 2004). In Eq. (3) the coeffi-
cients k, m, and a are material stiffnesses, while b and g are termed
coupling coefficients since these connect the micro- and macro-
scales. Of course, all of them should be chosen in order to have a
positive definiteness of the energy density in Eq. (3), i.e.,

a > 0; l > 0; kþ lþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ l� bð Þ2 þ 2g2

q� 	
> 0 ð4Þ

The Principle of Virtual Work, neglecting inertia and non-
contact volumic terms, states that

�dW þ dWext ¼ 0 ð5Þ
for every portion of the considered bi-dimensional body B and for
every virtual displacement dui as well as virtual rotation dw. The
external virtual work compatible with the deformation energy W is

dWext ¼ t
Z
@sB

siduidsþ t
Z
@WB

Wdwds ð6Þ

which is defined on the boundary of the bi-dimensional body B.
Therefore, the external actions are si and W, i.e., the force per unit
line and the micro-couple, respectively.

3. Links to granular mechanics

The problem of synthesis of a microstructure, or more generally
the micro-mechano-morphology, that, after homogenization, will
produce an energy of the kind shown in Eq. (3) is rather interesting
and somehow challenging. We believe that a chiral micro-
mechano-structure of the kind shown in Misra et al. (2020), De
Angelo et al. (2019) may give an example of such a synthesis. We
will pursue such rigorous homogenization in a future work. Here
we show that it is possible to link the postulated deformation
energy in Eq. (3) to the micro-mechano-morphological properties
of materials with granular textures. In our work, we consider gran-
ular materials to be those for which the deformation energy can be
represented by the aggregation of the deformation energies of
interacting grain-pairs. Indeed, by considering this linkage we will
reveal the micro-mechanisms that lead to the emergent macro-
scale behavior represented by our hypotheses. The granular
micromechanics approach (GMA) proposed by Misra and cowork-
ers (see for example (Nejadsadeghi and Misra, 2019; Misra and
Poorsolhjouy, 2017; Poorsolhjouy and Misra, 2019) provides a
practical pathway for developing this linkage. At the spatial scale
appropriate for continuum description, in which the material point
represents the collective behavior of numerous grains or behavior
of grain collections forming an RVE, the individual grains and their
motions are latent (concealed). It is notable though that it is the
grain motions that determine the deformation behavior of the
body, that is the mapping of a continuum material point from
undeformed to deformed configuration in a macro body composed
of such material. In GMA, the continuum description is achieved by
(i) expressing grain-scale motions of a discrete model of granular
system, in terms of continuum kinematic measures; (ii) identifying



the volume average of grain-pair interaction energies with the
macro-scale deformation energy density; and finally (iii) applying
variational approach for defining stress/force conjugates of the
kinematic variables, determining constitutive relations, and the
governing Euler-Lagrange equations (Nejadsadeghi and Misra,

/i ¼ uiðXmÞ þ w/
ij ðXmÞX 0

j þ w/
ijkðXmÞX 0

jX
0
k ð7Þ

considering by choice the displacement fields to be up to 2nd
order in terms of micro-scale coordinates, although higher-order
terms can be considered as discussed in [24]. In Eq. (7);ui is the
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2019; Misra and Poorsolhjouy, 2017; Poorsolhjouy and Misra,
2019; Misra and Poorsolhjouy, 2016). The GMA has parallels with
Piola’s concepts of continuum description of materials as an
approximation of a molecular view (dell’Isola et al., 2015;
dell’Isola et al., 2014; Eugster and dell’Isola, 2017; Giorgio et al.,
2017). In this sense, GMA can be viewed as a heuristic homoge-
nization scheme that proceeds by postulating deformation ener-
gies in terms of interrelated discrete and continuum kinematic
descriptors. The resultant deformation energy density of a contin-
uum material point and the granular volume it represents are the
same in GMA. The RVE, in this case, is defined as a volume of a
granular system whose mechanical response (deformation energy
density) remains the same as the volume is moved within a spec-
imen. This RVE size depends upon the micro-mechano-
morphological properties of the considered granular system. The
GMA is unlike the classical homogenization schemes in which
Hill-Mandel type conditions are defined as a basis for determining
RVE size. We briefly describe the seminal aspects of GMA and uti-
lize it to find equivalent deformation energy, as that postulated, in
terms of the grain-pair deformation energies.

3.1. Identification of grain motions with continuum kinematic
variables

Consider a 2D granular solid body which appears as a homoge-

neous continuum placed in a macro-scale Cartesian coordinate sys-

tem denoted by Xi. The continuum material points of this solid
body are formed of collection of grains. Further consider a micro-
scale Cartesian coordinate system denoted by Xi’, in which the
grain locations and motions can be distinguished. Now attach the
micro-scale coordinate system to the continuum material point,
with its origin at the barycenter of the corresponding volume ele-
ment and its coordinate axes parallel to the macro-scale coordinate
system Xi as shown in Fig. 1. Utilizing the two coordinate systems,
the displacement field of grain centroids, /i, under an arbitrary
deformation of this granular solid can be written as
(Nejadsadeghi and Misra, 2019)
Fig. 1. Schematic of the continuummaterial point, P, and its granular microstructure mag
macro-scale displacement field, and quantities w/
ij and w/

ijk, func-
tions of macro-scale coordinates Xm, are termed as the second
and the third rank micro-deformation tensors. The assumption in
Eq. (7) permits description of fluctuations in grain displacement
with respect to the macro-scale displacement field. These fluctua-
tions have been observed in experiments on grain packings and
have been widely commented in literature on granular and other
disordered systems as non-affine grain motions [36–41]. The
non-affinity arises due to a variety of factors, including irregularity
of granular structure, spatial variability and high contrast of grain
interactions (stiff or soft), and the peculiar and non-local nature of
grain interactions. Using Eq. (7), the displacement of the grain p
centroid can be written in terms of the displacement of the neigh-
bor interacting grain, n, centroid as follows

dnpi ¼ /p
i � /n

i ¼ w/
ij l

np
j þ w/

ijkJ
np
jk ð8Þ

where lnpj ¼ X0p
j � X0n

j is a grain-pair branch vector joining the cen-

troids of grains n and p, the tensor product Jnpjk � lnpj lnpk =2 is the gyra-
tion tensor. To understand the geometrical nature of the micro-
deformation tensors, it is useful to consider the following relative
deformation tensors

c/ij ¼ ui;j � w/
ij and c/ijk ¼ w/

ij;k � w/
ijk ð9Þ

where comma in the subscript denotes differentiation with respect
to the macro-scale coordinates Xi, and defines the macro-scale gra-
dients of the macro displacement field ui, and micro-deformation
tensor w/

ij .
In view of the hypotheses in Eq. (3) and the kinematic variables

of the continuum model in Eqs. (1) and (2), Eq. (9) is simplified by
assuming that only the skew-symmetric part of the relative defor-
mation is non-vanishing given by the relative rotation in Eq. (2)
such that w/

ðijÞ ¼ uði;jÞ ¼ Eij. Further, we assume that the 3rd rank rel-

ative deformation tensor c/ijkvanishes such that the 3rd rank micro-

deformation tensor, w/
ijk, is no longer and independent measure but

it is related to the macro-scale gradient of the 2nd rank micro-
nified for visualization, where the x0 coordinate system is attached to its barycenter.



deformation tensor, w/
ij;k. The assumption is analogous to the sim-

plification of kinematic measures to go from a Timoshenko beam
model to an Euler beam model by relating the rotational degree
of freedom to the gradient of deflection. Moreover, we retain only

of the grain-scale kinematic quantities and stiffnesses, based upon
a particular constitutive choice, as follows

Wa ¼1
2

KaM
n daMn
� �2þKaM

s daMs
� �2þKam

s dams
� �2þ2Kam

ns daMn dams
� �þKag

s dags
� �2h i

Fig. 2. Extension test with zero boundary conditions on w: stored energy density
a); displacement u2 b); micro-rotation w c).
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the gradients of skew-symmetric part of micro-deformation ten-
sor, w/

ij½ �, such that w/
ijk ¼ w/

ij½ �;k ¼ eijw;k and the kinematic descriptors

of the resulting model are the same as that in the assumed contin-
uum model.

In this case, the displacement of a grain centroid given in Eq. (7),
and consequently, the relative displacement of two neighbor
grains, n and p, in Eq. (8) will simplify to (using the kinematic vari-
ables defined in Eqs. (1) and (2))

dnpi ¼ /p
i � /n

i ¼ Eijl
np
j � eijcl

np
j þ eijw;kJ

np
jk ¼ dMi � dmi þ dgi ð10Þ

where we ensure that the macro-rotations do not result in relative
movements. Clearly, the relative displacement between grains (n
and p in our case) can be decomposed into components related to
the macro-strain, Eij, the micro–macro relative rotation, c, and the
macro-gradient of the micro-rotation field w, are, respectively, such
that for a generic grain-pair denoted by a (representing interacting
grains such as n and p)

daMi ¼ Eijl
a
j ; dami ¼ eijcl

a
j ; dagi ¼ eijw;kJ

a
jk ð11Þ

Thus, Eqs. (10) and (11) provide an identification of the contin-
uum kinematic variables with those of the grain motion. It is note-
worthy that the micro–macro relative rotation in Eq. (2) and the
micro-rotation field w, do not consider grain spins. The micro-
rotation appears to be simply a manifestation of non-symmetric
gradients of displacement at the micro-scale and do not imply
grain rotation or spin. Indeed grain spin or rotation could be signif-
icant in some granular systems [30] and are known from measure-
ments of kinematic fields in grain assembles [36,37] as well as
simulation using discrete granular models [42,43]. For further dis-
cussions of GMA based higher-order models, the reader is directed
to [24] which describes in details the kinematics of micromorphic
model of degree n as well as its devolution to micromorphic mod-
els of degrees 2 and 1, and to micro-polar models and 2nd gradient
models.

3.2. Deformation energy equivalence and 2D constitutive relationship

Using the grain-scale and continuum kinematic identification,

the deformation energy density, W
�
, in Eq. (3) can be expressed in

terms of grain-scale kinematic measures as follows:

W
�

¼ W
�

Eij; c;w;k

� � ¼ 1
V

X
a
Wa daMi ; dami ; dagi
� � ð12Þ

where Wa is the grain-pair deformation energy and the summation
is over all grain-pairs, denoted by a, within the volume element
forming the continuum material point.

The grain-pair deformation can be considered in a local Carte-
sian coordinate system formed of the unit vector along the axis
joining the centroids of the two grains, termed as the normal direc-
tion, and unit vector orthogonal to the normal direction, termed as
the tangential plane. For the case of 2D granular systems, the grain-
pair interactions are defined in the local coordinate system com-
posed of a unit normal vector, ni, along the line that connects the
grain centroids, and the tangential unit vector, si, orthogonal to
ni, given as

ni ¼ n1;n2h i ¼ cosh; sinhh i
si ¼ s1; s2h i ¼ �sinh; coshh i ð13Þ

where h is the polar angle of the 2D polar coordinate system. The
grain-pair elastic deformation energy can now be defined in terms
ð14Þ
In Eq. (14) the subscripts are used to denote the quantities along

the local coordinate axes (these subscripts do not follow tensor
summation convention), such that

daMn ¼ Eijl
a
j n

a
i ; daMs ¼ Eijl

a
j s

a
i ; dams ¼ eijcl

a
j s

a
i ; dags ¼ eijw;kJ

a
jks

a
i ð15Þ

and it can be shown that components of dami and dagi along vector, ni,
vanish, that is damn ¼ eijcl

a
j n

a
i ¼ 0; dagn ¼ eijw;kJ

a
jkn

a
i ¼ 0. We also note

that in Eq. (14) the coupling terms have been retained only for
the grain-pair relative displacement components related to the
micro–macro relative rotations and macro-strain. This constitutive
choice of deformation energy in Eq. (14) will lead to the desired par-
ticular form of continuum model given in Eq. (3).

The constitutive relationships can now be established recogniz-
ing that macro-scale stress measures can be defined as conjugates

Table 1
Micro-scale stiffnesses (kN/mm).

KM
n KM

s Km
s Km

ns Kg
s



to each of the continuum kinematic variables, (see for example
[25])

sij ¼ @W
�

@Eij
¼ CM

ijklEkl þ gdijc;

lized recently for describing certain lattice structures [12,13]. The
analysis presented shows that for a granular material to exhibit
chiral Cosserat effects of the type postulated in Eq. (3), the descrip-
tion of grain-scale kinematics (1) must include the quantities, c
and w, as given in Eq. (10), and (2) the grain-pair relative displace-
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r ¼ @W
�

@c
¼ 2bcþ g E11 þ E22ð Þ; lk ¼

@W
�

@w;k
¼ 2aw;k ð16Þ

In Eq. (16),sij, is the symmetric Cauchy stress, and r is the rel-

ative moment stress, lk is the double moment stress, and CM
ijkl is

the standard isotropic elastic tensor formed by the standard Lame’s
coefficients k and m (Eq. (3)). The passage from the summation in
Eq. (12) to integration through a directional averaging process for
isotropic aggregates of granular structures and the identification
of the constitutive coefficient in Eqs. (3) and (14) for given granular
structures have been described in [25,44]. Consequently, it is pos-
sible to link the grain-scale stiffness parameters with the macro
coefficients of Eq. (3) as given below.

k ¼ l2qc

8 KM
n � KM

s

� �
; l ¼ l2qc

16 KM
n þ KM

s

� �
;

b ¼ 4 l2qc

8 Km
s

� �
; a ¼ l4qc

8 Kg
s

� �
; g ¼ 2 l2qc

8 Km
ns

� � ð17Þ

In Eq. (17), the grain-scale stiffness parameters and grain-size l,
represent average values as defined in the Appendix and in [26],
and qc is the number density of grain-pair interactions. We further
note that the coupling between the relative micro–macro rotation
c and the two stretching deformations E11 and E22, is widely over-
looked in the literature on Cosserat and micro-polar solids (see for
example [10]), although this type of chiral coupling has been uti-
Fig. 3. Extension test with an imposed value of w equal to p/360: stored energy
density a) displacement u2 b) micro-rotation w c).
ment caused by these quantities must store energy. Consequently,
Fig. 4. Displacement u2 in an extension test with zero boundary conditions on w:
Km

ns ¼ 2:07a); Km
ns ¼ 1:035b); Km

ns ¼ 0c); Km
ns ¼ �1:035d); Km

ns ¼ �2:07e). Non-uniform
Poisson’s effect along the x-axis, and non-invariance to reflection about x-axis is
observed for non-zero coupling parameter Km

ns .



the synthesis of a granular micro-structure, or more generally
micro-mechano-morphology, must satisfy these requirements.
Such effects are indeed present in granular microstructures as seen
from the identification given in [44], and the micro-mechano
effects have been further expounded recently through analyses

grain size l = 22 mm and qc ¼ 1384 mm�3 for a representative vol-
ume element of size 1 mm3. We note that in order to highlight the
nature of chiral behavior, we have modified micro-stiffness, Kg

s

(from that in [44]). The modification is to enhance the thickness
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and experiments on 1D structures modeled as granular materials
[26,27].

4. Results and discussions

To examine the effect of chirality we have performed numerical

simulations of simple extension and simple shear with the pro-
posed bi-dimensional continuum model. In particular, these simu-

Fig. 6. Resultant reaction in the x-direction, showing a reduction for non-zero
coupling stiffness Km

ns .
lations intend to illustrate measureable effects that chirality
induces at the boundaries and the bulk body under loading condi-
tions that can be physically realized in laboratories. The numerical
simulations have been performed using the commercial software
COMSOL Multiphysics, which allows us to solve the Eq. (5) directly
resorting to a standard finite element formulation. Further to illus-
trate the link between the postulated continuum model and gran-
ular material that exhibit significant chirality we consider a case
study for which the values of micro-stiffness are those listed in
Table 1. These micro-stiffness are guided by the identification pre-
sented for regular granular structures presented by the corre-
sponding author in [44], particularly for structure designated as
assembly C. In these calculations we also assume that the average
Fig. 5. Distribution of reactions (along x- and y- directions and moments) along the righ
symmetrically in the x-direction and does not satisfy reflection invariance about the
distributed anti-symmetrically so as to yield a vanishing resultant. (c) Moments also sho
symmetrically distributed yielding vanishing resultant, for all other cases, a non-zero m
of the boundary layer such that the effect of chirality can be easily
visualized, although such effects are present in weakly chiral med-
t boundary for the five cases simulated in Fig. 5. (a) The reaction is distributed non-
x-axis for non-zero coupling parameter Km

ns . (b) The reaction in the y-direction is
w non-symmetric distribution. For zero coupling parameterKm

ns , the moment is anti-
oment resultant is obtained.



ium and in solids with weak Cosserat effect and could be signifi-
cant in determining its mechanical response.

4.1. Simple extension

The Fig. 2 shows the chiral effect, which is clear for the lack of
symmetry evident in the total stored energy density as well as in
the transversal displacement u2. A clear measurable outcome is
the lack of uniformity (in addition to the asymmetry) of Poisson’s
effect as seen from the distribution of transversal displacement
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Using the reported parameters, a simple extension test was
simulated for a rectangular planar body (20 � 80 mm dimension)
locking the left short edge and imposing a given longitudinal dis-
placement at the right short edge, while the micro rotation w are
kept null on these two edges, as follows:

u1 0;X2ð Þ ¼ u2 0;X2ð Þ ¼ u2 L;X2ð Þ ¼ 0; u1 L;X2ð Þ ¼ 5mm;

w 0;X2ð Þ ¼ w L;X2ð Þ ¼ 0;
ð18Þ
Fig. 7. Deformation energy density in a shear test with zero boundary conditions o
deformation energy density related to the chiral coupling is symmetric for zero couplin
u2. In addition, it may also be possible to measure micro-
rotations in the center region of the body as seen from the distribu-
tion of micro-rotation w. Fig. 3 displays the effect of the boundary
condition on micro-rotation w. Indeed, imposing a very small
value, different from zero, to w, we can observe a more noticeable
chiral effect both in the energy density and in the displacement (in
this case the boundary condition for displacement is given in Eq.
(18), while for micro-rotation is: w 0;X2ð Þ ¼ p=360;
n w: Km
ns ¼ 2:07a); Km

ns ¼ 1:035b); Km
ns ¼ 0c); Km

ns ¼ �1:035d); Km
ns ¼ �2:07e). The

g parameter Km
ns , while it is asymmetric for non-zero coupling parameter Km

ns .



w L;X2ð Þ ¼ p=360). Finally, we investigate the influence of the chiral
coupling term performing a parametric analysis on the coefficient
g, that is changing the micro-mechano structural coupling param-
eter Km

ns. This parametric study is performed for the boundary con-
dition in Eq. (18). The results are summarized in Fig. 4 where it is

ners show a significant difference. It is notable however that the
resultant y-component of reaction force vanishes since it is dis-
tributed anti-symmetrically along the edge given the clamped
boundary conditions. The reaction moments also have a non-
symmetric distribution. For zero coupling parameter Km , the
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clear that the chiral effect corresponds in amount to the value of
the considered parameter and when it is zero no chiral effect is
present. Both the asymmetric distribution of the transversal dis-
placement u2, and non-uniformity of Poisson’s effect show marked
severity with increasing value of the coupling parameter.

Further emphasizing the viewpoint of measureable effects, we
present in Fig. 5, the x- and y-components of reaction forces and
reaction moments (micro-couple) along the edge with specified
displacement and micro rotation, for the five cases simulated in
Fig. 5. As defined in Eq. (6), the reactions forces and moments are
the conjugates of the specified displacement and micro rotation.
From a numerical viewpoint, the constrained reactions Rx, Ry,
and Mz have directly been evaluated as Lagrange multipliers asso-
ciated with the essential boundary conditions (18) and (19). We
observe that the x-component of reaction force has a non-
symmetrical distribution along the edge when the coupling param-
eter Km

ns is non-zero. In fact, the force concentration at the two cor-
Fig. 8. Distribution of reactions (along x- and y- directions and moments) along the rig
direction is distributed anti-symmetrically so as to yield a vanishing resultant. (b) The
reflection invariance about the x-axis for non-zero coupling parameter Km

ns . (c) Moments
which the moment is symmetrically distributed.
ns

moment is anti-symmetrically distributed yielding vanishing
resultant. For all other cases, a non-zero moment resultant is
obtained. Finally, we observe in Fig. 6 that the resultant x-
component of reaction force decreases with increasing numerical
(absolute) value of coupling parameter Km

ns increases.

4.2. Simple shear

Simple shear test was also simulated for a square planar body
(20 � 20 mm dimension) locking left edge and imposing a given
transversal displacement at the right edge, while the micro rota-
tion w are kept null on these two edges, as follows:

u1 0;X2ð Þ ¼ u1 L;X2ð Þ ¼ 0;
u2 0;X2ð Þ ¼ 0; u2 L;X2ð Þ ¼ 2:5mm;

w 0;X2ð Þ ¼ w L;X2ð Þ ¼ 0;
ð19Þ
ht boundary for the five shear tests simulated in Fig. 8. (a) The reaction in the x-
reaction is distributed non-symmetrically in the y-direction and does not satisfy
also show non-symmetric distribution except for zero coupling parameter Km

ns , for



The Fig. 7 shows the effect of chirality in the total stored energy
density. For the case of zero coupling parameter Km

ns, the deforma-
tion energy density is symmetric with respect to the concentra-
tions at the corners (Fig. 7c). It is notable here that for classical
Cauchy continua, the deformation energy under simple shear will

We have shown that the micro-rotation is simply a manifestation
of non-symmetric gradients of displacement at the micro-scale
and do not imply grain rotation or spin, and the energy stored in
micro-rotation is related to the coupling between the normal and
shear response of grain-pairs.

Fig. 9. Resultant reaction in the y-direction, showing a reduction for non-zero
coupling stiffness Km

ns .
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be uniform. The boundary layers and concentrations at the corners
that develop are the consequence of micro-rotation degree-of-
freedom (Cosserat effect). Further, the chiral coupling term results
in an asymmetric distribution of deformation energy density con-
centrate reducing and emphasizing the energy concentrations at
opposite corners. The sign of the coupling parameter, Km

ns, determi-
nes the maximal and minimal corners.

Again, from the viewpoint of measureable effects, we present in
Fig. 8, the x- and y-components of reaction forces and reaction
moments along the edge with specified displacement and micro
rotation, for the five cases simulated in Fig. 7. We observe that
the y-component of reaction force has a non-symmetrical distribu-
tion along the edge when the coupling parameter Km

ns is non-zero.
In fact, the force concentration at the two corners show a signifi-
cant difference. It is notable however that the resultant x-
component of reaction force vanishes since it is distributed anti-
symmetrically along the edge. The vanishing x-component resul-
tant is not unexpected in a simple shear deformation. Finally, we
note that reaction moments have a non-symmetric distribution
except for the case of zero coupling parameter Km

ns. In all the cases
though, we obtain a non-zero moment resultant. Finally, we
observe in Fig. 9 that the resultant y-component of reaction force
decreases with increasing numerical (absolute) value of coupling
parameter Km

ns

5. Summary and conclusion

We have presented a Cosserat-like micromorphic continuum
model and its links to micro-scale mechanism in granular materi-
als. The presented effort is a step towards addressing the general
problem of finding a microstructure, which, upon homogenization,
results in the postulated macro-scale deformation energy, such as
that in Eq. (3). In this work, we consider the equivalence of postu-
lated deformation energy in the continuum model with that of the
granular model in which the granular micromechanics approach
(GMA) is used for the identification of grain-scale motion with con-
tinuum kinematic variables. The continuum parameter that leads
to chiral behavior is then identified with that at the grain-scale.
Example of a granular material in which the desired grain-scale
behavior can be obtained is presented. Parametric simulations are
also presented to expound the effect of chirality on response at the
macro-scale. Furthermore, from the viewpoint of measureable
effects, reaction forces and moments at the boundary are calcu-
lated under simple extension and simple shear test. Interesting
asymmetries in force concentrations and non-zero boundary
moments emerge as a characteristic of these materials. Future
studies will aim to identify the grain-scale mechanisms that can
tie the continuum models more strongly to the micro-scale
mechanics and develop rigorous homogenization schemes.
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Appendix

As an example, we evaluate the second of Eq. (16), written here
in expanded form as using Eqs. (14) and (15)
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Thus, we get the following
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ð21Þ
Since the summation in Eq. (21) is over all the grain-pair, it can

be sorted and binned according to grain-pair orientations and
recast as summation over the polar angle h as

b ¼ 1
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where Nq hð Þ is the total number of grain-pair for a given polar angle
bin h, such that

N ¼
X
h

Nq hð Þ ð23Þ

where N is the count of grain-pairs in the RVE and the summation
over q is the sum of the product of branch length square and the

grain-pair stiffness (for example lq
� �2

Kqm
ns ) for all grain-pairs in that

bin. For granular material systems with many different grain-sizes,
grain shapes and types of grain-pair interactions (which as combi-
nation can be termed as micro-scale mechano-morphology), these
sums will be different for different polar angles. This variation with
polar angles can be treated by defining directional distribution



functions. Since branch length and stiffnesses appear as products,
their directional distribution density cannot be defined indepen-
dently, therefore, we introduce the directional density distribution
function, nðhÞ, defined as

Chen, Y., Liu, X., Hu, G., Sun, Q., Zheng, Q., 2014. Micropolar continuummodelling of
bi-dimensional tetrachiral lattices. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 470
(2165), 20130734.
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where, for simplicity, we have assumed that grain-pair behavior fol-
low the same distribution. For materials with direction indepen-
dence, the density distribution function in 2D domains is simply

n hð Þ ¼ 1
2p

)
Z
h

ndh ¼ 1
2p

2p ¼ 1; ð25Þ

It is evident that the directional density distribution function,
nðhÞ, represents the relative measure of material stiffness in a given
direction resulting from a combination of grain-size, the number of
grain-pair interactions and the grain-pair stiffness. Further, it is
useful to define an average product of branch length square and
the grain-pair stiffness, l2Kn, as

l2Km
s ¼

PN
a¼1

la
� �2

Kam
s

N
; l2Km

ns ¼
PN
a¼1

la
� �2

Kam
ns

N
ð26Þ

where lmay be regarded as the average branch length, KM
n and KM

s as
the average grain-pair stiffnesses for the material, and qc ¼ V=N is
the number density of grain-pair interactions. Thus, using Eqs.
(13), 24 and 26, the following integral form of Eq. (22) can be
obtained

b ¼ l2qc
Rp
h¼0

Km
s eijnjsiepqnqsp

� �
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h¼0
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s ndh
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h¼0
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� �

ndh

ð27Þ

which using density distribution function, nðhÞ, for directionally
independent system in Eq. (25), yields the expression for b and g
in Eq. (17). The other elastic constants are obtained in a similar
manner.
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