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ABSTRACT

There is a growing interest in the application of UHP FRC (Ultra-High Performance Fiber-Reinforced Concrete)
which has been under vigorous development since its inception over two decades ago. The advantages of these
advanced materials is that they overcome the problems that plague conventional concrete, these include among
others low residual strength and low tensile strength, poor crack control and resistance to crack propagation,
which leads corrosion of the rebars and spalling. The aim of this paper is to provide a granular micromechanics-
based model to describe the deformation behavior of UHP FRC material as it gives a robust method to link the
micro-scale mechanisms with the macro-scale performance of materials with granular textures. In this model,
the micro-scale is described by damage-elasto-plastic spring elements that represent the effective grain pair
interactions decomposed into the so-called normal and tangential directions. Since the grain-pairs are variously
oriented, the macro-scale response is obtained by integrating these interactions over the orientational space.
Here we specialize the granular micromechanic model for UHP FRC by introducing a novel expression for
the parameterized dissipation energy at the micro or the grain-pair scale. The newly introduced constitutive
parameters are identified using experimental results for uniaxial extension and compression tests. The model
is then applied to simulate the case of homogeneous compression, extension and shear to show the directional
evolution of damage and plasticity and the consequent emergent anisotropy.

1. Introduction

to the structure-property relationships at different scales (Fabbrocino
and Farina, 2017; Giorgio et al., 2020a; Greco et al., 2017; Everstine

Portland cement concrete is among the most utilized construc-
tion material widely used in structural applications as reinforced con-
crete in building and bridge construction among others (Contrafatto
et al.,, 2012, 2016a,b; Scerrato et al., 2014). Conventional Portland
cement concrete suffers from a range of limitations, including low
tensile and residual strength, poor crack control and resistance to
crack propagation, spalling and workability (Khoury et al., 2002; Schre-
fler et al., 2002a,b). Ultra-High-Performance Fiber-Reinforced Concrete
(UHP FRC) is expected to overcome these limitations (Grimaldi and
Luciano, 2000; Caporale et al., 2006). Many of the advantages and
limitations of conventional Portland cement concrete can be traced

and Pipkin, 1973; Hu et al., 1985; Turco et al., 2016) beginning from
their chemical building blocks including minerals, such as calcium
silicate/aluminate hydrates (Gawin et al.,, 1999, 2005a,b; Majorana
et al., 1998; Dharmawardhana et al., 2014; Misra and Ching, 2013).
A modeling approach based upon the atomistic scale is fraught with
insurmountable challenges due to the complex composition, largely
ill-defined atomic structures with substitutions and atomic defects,
multi-scalar porosities, prohibitive computational expense and so on.
In this case, a convenient point of departure, which can link the macro-
scale behavior in a practical way to the building blocks is through
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Table 1

Concrete Mix design used in UHP FRC specimens.
Material Cement Fly Ash Sand 8 mm Water Plasticizer Fibers
Dosage (kg/m?) 800 200 925 195 18 20

the meso-scale of mineral agglomerates, or grains (Misra and Poor-
solhjouy, 2015; Misra and Singh, 2015). To this end, the granular
micromechanics approach (GMA) provides a paradigm for obtaining
continuum models that link to effective grain interactions (Misra et al.,
2021). The GMA has been particularly successful in developing micro-
macro linked models that predict a range of emergent phenomena,
such as loading induced anisotropy evolution that could be caused
by micro fracturing or microstructure changes under imposed con-
ditions (Timofeev et al., 2021; Placidi et al., 2021), elastic chirality
due to peculiar grain-pair elastic interactions (Giorgio et al., 2020b;
Ciallella et al., 2023), emergent chirality due to directional evolution
of damage (Timofeev et al., 2021) among many others. The elastic
chiral behavior as well as the evolving chirality exhibited by such
materials is in fact predictable only by considering generalized (higher-
order or higher-gradient) continuum theories (Auffray et al., 2015b)
that naturally arise through the application of GMA. The significance
of higher-gradient or strain gradient theories have been discussed
widely (Auffray et al., 2015a) and its application goes well beyond the
regularization of computation for mesh independency (Ambati et al.,
2015; Bourdin et al., 2000; Bourdin, 2007a,b; Bourdin et al., 2008;
Del Piero et al., 2007; Francfort and Marigo, 1998; Li et al., 2016) to
revelation of a range of hitherto unrecognized, latent or less understood
phenomena such as chirality and size dependency of strain localization
zones to micromechanisms (Abali et al., 2017; Placidi and Barchiesi,
2018). In order to accomplish such higher-gradient theories, variational
methods (dell’Isola et al., 2000) are needed to properly establish the
boundary conditions and the governing equations. Moreover novel
computational techniques (Battista et al., 2016; Greco and Cuomo,
2013, 2014; Ramaglia et al., 2018) are also necessary for accomplishing
numerical simulations correctly and accurately by changing the set of
basis functions. Variational methods are important to develop proper
models for metamaterials (dell’Isola et al., 2016, 2015; Fabbrocino and
Carpentieri, 2017; Mancusi et al., 2017) and are able to consider not
only conservative systems but also dissipative ones (Erden Yildizdag
et al., 2023; Lancioni and Royer-Carfagni, 2009; Marigo, 1989; Reddy,
2011a,b) with the use of proper hemivariational generalization.

Here we apply the GMA, which we have previously applied to con-
ventional cement concrete (Poorsolhjouy and Misra, 2017; Timofeev
et al., 2021), to describe the behavior of UHP FRC. From the viewpoint
of GMA, the key aspect that characterizes a particular material and in
this case for example that distinguishes UHP FRC from the conventional
cement concrete, is the micro-scale elastic and dissipation behavior
represented by the effective grain-pair interactions decomposed into
the so-called normal and tangential directions. Dissipation phenomena
has been widely discussed in continuum mechanics (Aifantis, 1984,
1987, 1992) from macro-scale as well as micro-scale viewpoints (Scer-
rato et al., 2015; Altenbach and Eremeyev, 2008; Giorgio et al., 2016,
2017). Dissipation due to material irrecoverable damage or plastic
deformations in materials such as UHP FRC can take place through
a variety of interacting mechanisms at structural scales ranging from
the atomic through many intervening structures, such as grain bound-
aries and interphases, to those scales at which we consider continuum
models. At each scale, there are a myriad of mechanisms that interact
to produce damage and plasticity related dissipation in relation to
the applied boundary actions. In GMA, this complex of dissipation
mechanism is described through the effective grain-pair interactions
as the representative of all the myriad lower scale mechanisms. In
a material with random isotropic microstructure, the effective grain-
pair are considered to be equally likely oriented in all directions and
the macro-scale (or continuum material point) response obtained by
integrating these interactions over the orientational space. We remark

that the microstructural features that may be included or emphasized
depend upon the modeling approach. In GMA methodology elaborated
in this work, the orientation of the effective grain-pair is the key mi-
crostructural feature that appears in the model. As we have described,
the effective grain-pair is conceived to represent the elastic-storage and
dissipation phenomenology in given orientations. In this sense, the con-
tinuum model can be devised to describe various inherent anisotropies
in its reference (or unloaded) state. Moreover, it is notable that during
prescribed boundary actions, the deformation suffered by a continuum
material point results in the various grain-pair directions experiencing
different loading histories resulting in directional evolution of damage
and plasticity and an overall evolving macro-scale anisotropy.

The structure of this paper is as follows. In Section 2 we report the
basic experimental characteristics of UHP FRC, some of which we aim
to model in the paper. In Section 3 we recap the granular microme-
chanic approach we use in the rest of the paper. The formulation is
here synthetic and reduced for the specific homogeneous case that is
investigated with the used simplified boundary conditions of Figs. 4 and
6. As a consequence, we avoid the derivation of strain gradient regu-
larization terms in the elastic energy in Section 3.1, already presented
in other publications, but we present a novel form of the dissipation
energy in Section 3.2 that is able not only to (i) provide asymptotically
and exponentially, in (36)-(37), the failure mechanism, but also to
(ii) consider a predefined threshold (in tension and in compression
according to (21)) to activate not only plastic, see e.g. (38)-(39), but
also damage, see e.g. (36)-(37), phenomena. In Section 4 we expose
the used methodologies for the numerical characterization of those
parameters introduced in the energy functional reported in (22) to
serve the experimental data of Sections 2.3 and 2.4. In Section 5 we
present the promised numerical simulations. To do this, we define the
investigated cases in Sections 5.1 and 5.2 and show the simulations in
Section 5.3 with the numerical method in Section 5.3. Conclusions and
outlook end the paper in Section 6.

2. Experimental results of UHP FRC
2.1. The mix design of the material

Mechanical properties of concrete are determined by the concrete
mix design that consists of the dosage of each composing material,
that is the proportions of cement, aggregates, additives, and water. The
concrete mix design for the UHP FRC modeled and simulated in this
paper has been developed in earlier works (Abdou et al., 2022). Using
this mix proportion, test samples were fabricated using a UHP FRC mix
that is self-consolidating. The key for producing this type of concrete is
the choice of mean equivalent aggregate diameter, defined as the mean
of all the aggregates based on the 500 g sample classified through sieve
analysis. Lower equivalent diameter of the aggregates results in better
performance in terms of flowability and viscosity of fresh concrete. For
the UHP FRC mix, 8 mm equivalent diameter aggregates were used. In
addition, by substituting a significant amount of Portland cement with
pozzolans such as fly ash, silica fume or others, along with the fibers
either made of PP material (polypropylene) or steel, helps in achieving
higher compressive strengths (Bragaglia et al., 2021a,b; D’Ambra et al.,
2019; Grande et al., 2020). The concrete mix of the samples modeled
in this paper include the PP fibers and a substitution of part of the
cement dosage by fly ash. The fibers are expected to play an important
role in the strength of post crack stage, when the concrete cracks and
the fibers (i) hold the concrete element together and (ii) prevent the
opening of the crack any further. The post cracking effectiveness of
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Fig. 1. UHP FRC Compressive Experimental Test Results According to the EN 12390 standard (Stress o, = 7Sfl[’ - Strain ¢, = —G,; Graph). Average (over 3 samples) response is

shown, with a variance percentage of 10.

Table 2

Polypropylene Fibers’ Properties.
Length (mm) 55
Equivalent Diameter (mm) 0.8
Density (Kg/m?) 910
Tensile strength (MPa) 560
Elastic Modulus (MPa) 3900
Shape Crimped
Melting Point (C°) 160

fibers in UHP FRC are measured with both the residual strength and
the tensile strength (Abdou et al., 2022).

The following tables 1 and 2 give the concrete mix design dosages
and the properties of the polypropylene (PP) fibers used in the tests,
respectively.

2.2. General aspects of the experimental tests

UHP FRC has a high compressive strength at 28 days (see Sec-
tion 2.3). Other characterizations are done with the direct tensile (see
Section 2.4) and three point loading tests according to EN 14651
(UNI/CT 021/SC 04 UNI/CT 021, UNI/CT 021/GL 03, 2015). The latter
is important because it gives the understanding of the behavior of the
fibers after the first crack in the concrete by insertion of an initial notch
in the middle of the lower side to govern the path of the crack. In
this test a displacement is applied in the upper middle part and both
force and CMOD (Crack Mouth Opening Displacement) are recorded.
The fibers prevent the failure of the structural element and limit the
crack opening in the sample. They also result in strength hardening
or softening. To focus the present work to homogeneous deformation
cases, we will consider the simulation of the three point bending test
in a future publication.

2.3. Compressive test

The compressive strength has been executed according to the EN
12390 (UNI/CT 009, 2022) standard where 3 samples of the concrete
mix have been cast in Abdou et al. (2022). Thus, they have performed
the tests with the results shown in Fig. 1, where we report the average
(over the 3 mentioned specimens) compressive stress vs the average
compressive strain with a variance percentage of 10. Each side of the
cubic specimens is A = 100 mm and the stress is calculated by dividing
the applied force by the surface area of the cube face.

From Fig. 1 the experiment starts with a linear elastic stage,
-S)0 =0, = Ece. = -EG),. eh)

where the compressive stress o, is identified with the opposite of the
component 5131‘) of the stress tensor in a 3D model, ¢, is the compressive
strain, that is identified with the opposite of the component G,; of the
strain tensor (properly defined in (10)) and with an initial modulus of
elasticity in compression that can be easily extrapolated,

E, = 45.55 GPa )

At the end of this stage, the peak is reached. It defines the compressive
strength of the tested concrete which, in this case, is around

oM™ = 143 MPa.

Beyond the first elastic stage, a softening one occurs. A normal tradi-
tional non fiber reinforced concrete would undergo an instant failure
and the test would terminate at this point. However, this is not the case
with the UHP FRC because of the presence of the fibers. In fact, beyond
the peak, a plateau starts where the fibers intervene in the deformation
process preventing a sudden failure. The material response is a gradual
softening with non negligible resisting force with higher strains.

2.4. Direct tensile test

With regards to the direct tensile test using a dog-bone specimen, the
dimensions of the sample in the neck area are 200 mm long with a cross
section of 150 mm x 80 mm as shown in Fig. 2. The choice of relatively
larger cross-section ensures sampling of sufficient randomly oriented
fibers to permit correct evaluation of the effect of fibers on the tensile
performance. Fig. 3 expresses the curve of the averaged (over the 3
samples that were experimentally tested) tensile stress, with a variance
percentage of 12, vs the average tensile strain. Even for the tensile case
we have an initial linear elastic behavior

S =06, = Ee, = E,Gy. 3

where the tensile stress o, is identified with the component Sf’lD of the
stress tensor in a 3D model, ¢, is the tensile strain, that is identified
with the component G,; of the strain tensor (properly defined in (10))
and the modulus of elasticity in tension is

E, =215 GPa. 4



L. Placidi et al.

International Journal of Solids and Structures 297 (2024) 112844

100 mm

Fig. 2. UHP FRC Tensile Test (Dog Bone) Specimen’s Dimensions.
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Fig. 3. UHP FRC Direct Tensile Experimental Test Results (Stress Sfln =0, - Strain ¢, = G,; Graph). Average (over 3 samples) response is shown, with a variance percentage of 12.

The linear elastic part is defined from the beginning to the peak, where
the ultimate tensile strength is measured,

o™X 2 9.12 MPa.

This value is much higher than any other normal concrete, e.g., for
the C25 case, which is one of the most commonly used concrete, the
tensile strength is typically 2.6 MPa. A normal non fiber reinforced
concrete would fail and the sample would break right after reaching
the peak. In the case of UHP FRC it can be seen that the sample starts
to undergo softening stage after the peak. Experimental tests performed
with different mix design have shown that the higher the dosage of
the fibers, the larger is the plateau after the peak. The sudden stress
drop events as extension progresses are likely due to the fiber-matrix
debonding and even fiber breaking. In any case the overall post peak
response is one of steady softening rather than catastrophic fracture due
to the resisting mechanism provided by the fibers.

Additional observations on the tests could be made as follows:

(a) The elastic stiffness is consistent in both tension and compression
test results, reflecting, in this stage, a similar but not identical behavior.

(b) The discrepancy between tension and compression test outcomes
is attributed to the material’s damage-plastic behavior. Notably, the ma-
terial exhibits distinct responses in the damage-plastic phase, wherein
fibers perform optimally under tension. This explains why the compres-
sion test does not show a significant increase in ultimate strength but
rather an improvement in sustaining resistance until failure.

(c) A stress—strain plateau is consistently observed just before failure
in each presented test. This phenomenon is attributed to the reinforcing
characteristics of fibers in concrete, allowing for increased deforma-
tions at higher stress levels until eventual failure of the element.

(d) All the aforementioned factors have been carefully considered
in the model and subsequent simulation to ensure the most accurate
representation of the data.

3. Homogenization recap within the framework of granular micro-
mechanics

3.1. The elastic strain energy density

In this continuum formulation, and for a given point X of the
continuum body B, we assume a damage-elasto-plastic pair interaction
for each orientation, that we denote by the unit vector ¢. The elastic
energy that we associate to each pair-interaction, according to the
same homogenization procedure adopted by Cauchy (Cauchy, 1828)
and Navier (Navier, 1827) almost 2 hundreds years ago, is therefore
integrated over all the orientations ¢, i.e. over the unit circle S' in
the present 2D case, in order to obtain the elastic energy U per unit
area, i.e. the elastic strain energy density. Besides, the elastic energy
associated to each orientation is assumed to be quadratic with respect
to two relative displacements, i.e. the normal displacement u, and
the tangential displacement u,, that we will define in (8) and (9),
respectively, as a function not only of the average distance L, but also
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Fig. 4. Tension (with & (f) > 0)/compression (with §(7) < 0) boundary conditions for a
squared shape body 5 inducing homogeneous deformation reported in (68).

of the orientation ¢ and of the Green-Saint-Venant strain tensor G.
The pair-interaction elastic energy is also proportional to the damage
normal stiffness k, j, and to the damage tangent stiffness k, p, that are
reduced by the normal damage D, and by the tangent damage D,.
These stiffness and damage variables are all functions not only of the
point X of the continuum body B but also of the orientation ¢ of the
unit circle S'. In formulae we have that the elastic strain energy density
U is defined as follows,

2
U= /Sl [%k,,,u () + %k,,D (uf)] dA, VYXeEB ®)

where d A is the area element on the unit circle S', the elastic part u¢ of
the normal displacement , is postulated to be equal to the difference
between the normal displacement u, and its plastic part uﬁl,

el _ _ ol
Uy =y — 6)

where the normal plastic displacement uf,’ is assumed to be the differ-

ence between two plastic multipliers, the accumulation plastic tension
A:, and the accumulation plastic compression /1;,

Wl = =20, )

According to the definitions in Placidi et al. (2021), Timofeev et al.
(2021), normal and squared tangential displacements are defined as
follows,

u, = LG;;é,6; ®)

W2 =4L2G;;Gyp (8,488 — €,6,8,C5) 9)

where, as it was stated at the beginning of this Section, the unit vector
¢ is the direction of the considered pair interaction and it belongs to
the domain S', that is the unit circle over which the integral in (5) is
computed; the Green-Saint-Venant tensor G is a tensor of 2nd order,

L pr
=—(F' F-1 1
G=1( ). 10)
where F is the deformation gradient,
F=Vy, an

that is defined in terms of the placement function y (X,), that is a
function of the position X and of the time ¢. The damage variables D,
and D, have the role to reduce the non-damage normal stiffness k, and

the non-damage tangent stiffness k,, respectively,
kyp=k,(1-D,), k,p=k (1-D,). 12)

Besides, non-damage normal stiffness k, in tension k; and in compres-
sion k; is different in granular materials in general and this is true also
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for UHP FRC. The presence of two different stiffness (i.e. the normal
and the tangential stiffness) implies the need for two different damage
variables since the normal and tangential damage may be expected to
evolve differently. We consider a certain orientation ¢ to be in tension
or in compression on the basis of the sign of the elastic part uf;l of the
normal displacement u,. Thus,

— el c el
k,,_k;@(un)w”@(—un), (13)

where O (x) is the Heaviside function, that is equal to unity value if
x > 0 and to zero if x < 0. Insertion of (6), (8), (9) and (12) into (5)
yields the elastic energy per unit area in a more compact form,

1
U= E(CijabGijGab +P;G

where, accounting for the symmetrization induced by the symmetry of
the strain tensor G, the elastic stiffnesses C, and the pre-stress P are
identified as follows

14

ij

Cyjap = L* /SI k, (1= D,) &¢é;¢,6,d A 15)
2 A A A A A A A A AA A A
+L /Sl k. (1 - DT) ((6iacjcb +0;C; 8, + 6,66, + 5jbcica) —4¢;¢;¢, b) dA
P, = _L/l ky (1= D,)ul'é;é;dA (16)
K

According to the legacy of the continuum mechanics (Auffray et al.,
2015a), a consequence of the expression (14) for the elastic energy per
unit area is the form of the stress tensor S, i.e.,

oUu
= 56, Py + CijupGap a7
where the pre-stress PP is therefore interpreted as the stress .S with
no strain, i.e. with G = 0. We oversee that (i) the normal plastic
displacement uf;l has a direct influence, as expected, from (16) on the
pre-stress and (ii) damage variables D, and D, have a direct influence
from (15) on the stiffness tensor.

3.2. The dissipation energy density

Damage and plastic variables are dissipative in nature and their
evolution is related to the form of the dissipation energy. Similarly to
what was done for the elastic energy density in (5) we assume a form
for the dissipation for a given pair orientation ¢ and then we integrate
such a dissipation over the unit circle S,

1
W = /51 {532 [ky& (Dys Dpiy) + ko8 (Dys Dy )]

t
+ (1=D,) (o1 +o5ac) b aa,

(18)
vX eB

where B is the initial characteristic damage displacement, 0’,’7 and o}
are the initial plastic yielding points in tension and in compression,
respectively, and the function g is defined as follows,

g(d.dy,) =2-2log (1 —d,,)+ (log (1-d,,))
@ =1 (2=210g (1= dy) (1 = D] + (log [(1 = ) (1 = D])*).

2

It is worth to note that its derivative with respect to the first variable
d takes a simplified form,

og 2

= [log (1 —d,y;) (1 - )] (19)
and that with d = 0, we have

g(0,d,,) =0. (20)

The variable D,,, has different values, i.e. D" and D"", in compres-
sion and in tension, respectively,

D, = D""@ (—u,, + !~ /1;) +D"O (u,,, — i+ ,1;) . (21)
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where a direction ¢ is assumed to be in compression or in tension
looking for the sign, negative or positive, respectively, of the elastic
part u;’ of the normal displacement according to (6).

It is worth to give an interpretation of the form (18) of the dissi-
pation energy. The second addend involves normal damage and plastic
descriptors. It is linear with respect to plastic descriptors and the co-
efficients of such a linearity will be interpreted as a yielding threshold
once the corresponding KKT will be derived. It is possible to prove that
the dependence of such coefficients with normal damage makes the
activation of plastic evolution to be independent with respect to dam-
age. Thus, the dissipation increases indefinitely with plastic descriptors
but the damage factor attenuate such a tendency. The first addend is
more complicated. It involves only damage. First of all the restriction
(20) makes the dissipation to be null with damage equal to zero and
the positiveness of (19) makes the dissipation monotonic with damage.
Besides, the higher the value of the parameter d,,, the higher the value
of the derivative (19) and therefore the higher is the difficulty for the
material to increase the level of damage. Besides, we will achieve a
clear interpretation of the variables D" and D" introduced in (21)
after the exploitation of the Hemivariational principle in the following
Section 3.3. It is worth to note finally that the first addend of (18)
has been split into two parts, one for normal and one for tangent
components.

3.3. The hemivariational principle for the continuum model

The (action) energy functional is defined as the sum of the elastic
and dissipation energies,

8(;{,Dn,DT,A;,A;):/B[U+W—bf'“)(,-] dV—/a lilav. @2
N

integrated over the 2D reference configuration B. »** is the external
distributed body force acting on the surface B and **' is the external
distributed force acting on those part 9, B3 of the boundary 0 for which
we do not prescribe the placement y (i.e., we do not prescribe Dirichlet
boundary conditions) and therefore on which we prescribe Neumann
boundary conditions. The energy functional € is a functional of the
fundamental kinematical descriptors of the model, i.e. the placement

x (X, 1), (23)

that is a function of the position X and of the time 7, and the 4
irreversible descriptors

D, (X.6,1), D (X,8,0), 4 (X,8,1), 4 (X,8,1), (24)

that are all functions not only of the position X and of the time 7 but
also of the orientation ¢. Damage (D, and D,) and plastic (A:, and /1;)
variables are defined as non-decreasing in time. Thus, these inequality
assumptions,
t c
] >0, 9D >0, % >0, % >0,
ot ot ot ot

imply a generalization of standard variational principle into a so-called
hemivariational principle. To do this, let us introduce a monotonously
increasing time sequence 7; € {7;},_, , with7, € Rand M € N
and give initial datum on each of the fundamental kinematic quantities
for i = 0, i.e., for time r = T,,. A family of placements y defines the
motion for each time 1 = T\, T}, ..., Ty;. The set AM, of kinematically
admissible placements is defined for a given time ¢ and the set AV is
defined as the corresponding space of kinematically admissible varia-
tions, i.e., v = 6y € AV,. Admissible variations § of the irreversible
kinematic quantities (Dﬂ, D,, }“:1 s Af,) must be positive because of (25),
namely

VX eB, VéesS!, (25

p= {5D,,,5D,,5/151,5/1;} € R* x R* x R* x R*. (26)
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By definition, the first variation 6€ of the energy functional (22) is
calculated as

68 =€ (x84, + 5D, D, + 8D, A+ 340, 4+ 845 ) = € (1. D, Dr 2 75)
27)

Besides, the increment of (23)-(24), i.e. of the fundamental kinematic
quantities, at r = T, is given by the difference between these quantities
as evaluated at times 7 = T; and ¢ = T;_;, namely

t c —_ t c t c
(A,(,AD,,,AD,,MH,AAW)T’ = (x D,,,Dr,/lv,/lﬂ)T’ - (;(,D”,D,,Aq,/lw)m
The same definition is utilized for the increment A£ of the energy
functional

— t t e c)_ [T
A€ =& (r+Ay.D,+AD,.D, + AD,. 2, + Ak 45 + A% ) =€ (1. D, Do 20, 75 )
(28)

Finally, as a matter of fact, the hemi-variational principle is formulated
as follows

AE > 5E Vu=by€ AV, Vﬂ:((SDW,(SDT,M;],M;)6R+XR+XR+XR+,

(29)

As remarked in Marigo (1989), the inequality (29) states that the
actual energy release rate, proportional to A&, is not lower than any
possible one. Thus, it constitutes a kind of principle of maximum energy
release rate.

3.4. The Euler Lagrange equations for the continuum model

The derivation of the Euler Lagrange equations is done according
to the derivation deduced in Placidi et al. (2022, 2021), Timofeev
et al. (2021). First of all, the reversibility of the admissible placement
variation v = § y € AV, implies the following variational equality,

t c t c\) — 43 —
€ (x+0.0y Doy 1) =€ (1.0 Do i) = Soox =0

Yo=6y € AV},

that corresponds to those Partial Differential Equations (PDEs) and
Boundary Conditions (BCs) valid for standard geometrically nonlinear
elastic materials for fixed values of irreversible kinematic quantities
(Do Do 2 75),
S;j+b=0, VXEB,

Sy =t, VX €oyB. (€3]

Secondly, following the methods developed in the same papers in Placidi
et al. (2022, 2021), Timofeev et al. (2021), Misra et al. (2021), the
variational inequality (29) implies the following KKT conditions corre-
sponding to the 4 irreversible kinematic descriptors (D,?, D, /1:’, /If,),

{ D= Dy 24,75 } 4D, = 0, (32)
{D, ~ D, (uy. A, /1;)} AD, =0, (33)
{4 = Ty, 25,0, } 42 =0, &)
{4 = 2o, 44, D,) } 425 =0, (35)

where the thresholds are evaluated by derivation of the energy func-
tional (22) and reported here,

tat 4 cac 2
1 \/2_ (= a2
N t cy — _ —- n
Dy, 25, 45) = 1 b exp B (36)
2
N t N\ — 1 (uT)
D (ug, Ay, Ag) =1~ D e , 37)
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~ o-t
Ay, A5, D) = wy + 25 — k—: (38)
C

Rty Ay Dy) = =ty + 4y = 2. (39)
n

It is worth to note that the placement y from (23) is a function only
upon the position and time. Thus, the PDEs and BCs (31) have to be
solved over the domain VX € B and for every time t = T;,, T}, ..., Ty,
Besides, the irreversible kinematic descriptors in (24) are functions
not only upon position X and time 7 but also upon the orientation ¢é.
Thus, they have to be solved not only for every position of the domain,
i.e. VX € B, and for every time, i.e. for every time t = T;,, T}, ..., Ty,
but also for every orientation, i.e. V¢ € S'. Besides, the KKT conditions
(32)—(33)-(34)—(35) are algebraic equations and therefore no Finite
Element Method is necessary for their evaluation.

4. Characterization of the 2D granular micro-mechanics frame-
work for the UHP FRC

4.1. Interpretation of the constitutive parameters of the granular micro-
mechanic model

The model that we have recapped in the previous Section 3 depends
upon only 9 parameters, i.e.

c Lt mtr mtr __t c
ke ky ke, L, B, DI, D" ol o (40)

The first three (k;, kf7 and k,) are related to the elastic response from (5)
with the inclusion of (6)-(13) and the fourth (L) to the characteristic
size of the microstructure of the material. In Barchiesi et al. (2021) we
have already proved that, in the case of tension-compression symmetry
(k, = k; = k;) and for an isotropic elastic geometrically nonlinear
material, the three parameters k,, k, and L are related to the 2D
Young’s modulus Y, and Poisson’s ratio v, ),

1-3vyp

= Yyp— 2
TP (1-02))

Y.
ky=—22 &

41
T 2L (1= vyp) “n

In this paper the deformation is, for the sake of simplicity, homoge-
neous and therefore strain gradient effects are not relevant. Moreover,
the material is not at all an elastic one. However, the material is initially
elastic and isotropic but with a different elastic behavior in tension and
compression. In order to use the experimental results in (2)-(4), we
assume a uniaxial homogeneous tension (or compression) deformation
test along the orientation é;, so that the Green Saint-Venant strain
tensor G has the following null components,

G, =Gy =0. 42)

so that from (17), with the insertion of (15) and of (42), we have that
the uniaxial stress Sy, is

xL?
S =CinGy =T(3kn +4k,) Gy (43)
If we assume the validity of (41) in compression (Y, = Y5
Yy 1-3
Ke=—— 20 g =y, D (44)

Parr(1-02)

T L2 (1-vyp)
the general form of the stress (43) with the inclusion of (i) the com-
pression condition k, = k¢, (i) the identification (44) and (iii) the
experimental law (1) with (2) yield,

G, =SPA=EG A, (45)

nL? b
su =" (3k;+4kT>G” -

1—\/20)

so that the identification of k} and k. is derived from (44) and (45),

1-3
k,=E,——204 . (46)

&= E 1+v2DA
4 L?

n c 7L'L2 c’

International Journal of Solids and Structures 297 (2024) 112844

It is worth to note that S, is the component of the stress for the
present 2D case and Sle is the analogous component in a 3D case. If the
thickness is assumed to be equal to A then their relation is .S}; = S131D A.
Besides, in the compression test of Fig. 1, where we identify E, in (2),
the thickness is A = A, = 10 cm. In tension the general form of the
stress (43) with the inclusion of (i) the tension condition ky, = k:, and
the experimental law (3) with (4) yield,

12
su =" (3K, + 4k, ) Gy = SIP A = E,Gy A, (47)
so that the identification of k; is derived from (46) and (47),,

kf—‘_‘E’A’_i
173 g2 300

(48)

It is worth to note that in the tension test of Fig. 3, where we identify
E, in (4), the thickness is extrapolated from Fig. 2, i.e. A = A, = 80 mm.

From (37)B is interpreted as the characteristic tangent damage
relative displacement. From (36) the interpretation of B as the char-
acteristic normal damage relative displacement cannot be done as it
was done in Maksimov et al. (2021), Placidi et al. (2022), Timofeev
et al. (2021), Placidi et al. (2021) because of the presence of plastic
multipliers in the KKT conditions that comes from a novel form of
the dissipation energy functional in (18). However, for the sake of
simplicity, we call B the characteristic damage displacement. From
(36) and (37) it is evident that the higher the B, the lower is, for
a given deformation process, the velocity of the damage evolution
and for a given value of B one needs the same value for the relative
displacements (e.g. tangential displacement u, ~ B) to achieve a
non negligible value (i.e. (1-D,,. —e!)/(1-D,,)) for tangential
damage.

Let us calculate the 4 thresholds Dn’ D,, 2, and ] from (36)-(37)-
(38)—(39) at the beginning of the deformation process, i.e for which the
relative displacements u, and u, and the damage D,, and D, and plastic
/1; and /lf, variables are all null,

1 Dmtr

D,(0,0,0) = D.(0,0,0) =1 - =-1-p

mtr
c

61‘
7,0,0,00 =L, 1.0,0,0)=--"1,
k,7 ¢ kn

vXeB, VéesS.

They are all negative once one adopts the following restrictions

k, >0,

. o, >0, o, >0, 0< D, <1.

This is an important choice because, being all null the initial values of
the 4 non-decreasing descriptors

D, =D, =4 =4 =0, a  t=0 (49)

the KKT conditions (32)-(33)—(34)-(35) are not solved with the curled
parentheses, i.e. with

D,=D, D.=D. X=12 =32 (50)
but with prescribing no increments, i.e. with

A 1
AD,,:ADT:AA;:AA;:O, vVXeB, Vies

Besides, in order to solve the KKT conditions (32)-(33)-(34)-(35) with
the curled parentheses and therefore to achieve a condition for damage
and plastic evolution one needs to achieve an amount of relative
displacements to make null the 4 thresholds D,, D,, 4, and .. In the
following we will consider null, as in the initial condition (49), damage
and plastic descriptors and make specific such amounts of relative
displacements. From (36) the norm “g,,” of the normal displacement
needs to be equal to the positive number 7, p,

s = @ = —B10g (1= D,0y) - (51
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From (37) the norm 4/ (ur)2 of the tangent displacement needs to be
equal to the positive number i,

(u,)> = t,p = —Blog (1 - D,y,) . (52)

From (38) the normal displacement u, needs to be positive and equal
to the positive number 7,

(53)

:.?\N.l :q-‘

u, = IJ” 2=
From (39) the normal displacement u, needs to be negative and equal
to the negative number &,,.,

u =i, =——t. (54)

Thus, the quantities D,,,. (D" if the orientation is in tension and D"
if the orientation is in compression according to (21)), o‘”] and af, are re-
lated to those relative displacement values that are necessary to activate
damage and plastic evolution according to (51)-(52)—(53)-(54).

4.2. Identification of the constitutive parameters of the granular micro-
mechanic model

Let us first assume a characteristic size L of the microstructure to
be

L =10 mm. (55)

A better characterization of this size will be achieved in another pub-
lication dedicated to the non-homogeneous case, where the size of the
strain localization will be of the same order of magnitude of the charac-
teristic size L because of a different and strain gradient representation
of the relative displacement (8)—(9).

By analyzing the first elastic stages in Figs. 1 and 3 we have
achieved the values of elastic stiffness in tension and in compression
in (2)-(4). By assuming a standard value

vop =2 0.2, (56)

for the 2D Poisson ratio, from (46)—(48) and the insertion in it of
(2)-(4)-(55)—(56), we have the following numerical identifications,

ke =1.74x10" N/m*, k! =537x10"> N/m’, k, = 1.45x10"* N/m’. (57)

Let us consider the uniaxial test defined in (42). Insertion of (42)
into (8) yields the corresponding normal displacement as a function of
the orientation ¢,

u, = LGllélz, (58)

where ¢, is the first component of the unit vector é. Thus, the orien-
tation that suffers the maximum normal displacement 4™** is in this
case ¢ = ¢y, i.e. the maximum normal displacement ;'** is achieved by
insertion of ¢, = 1 into (58),

U™ = LGy 59

Let G|, > 0 be the value of the strain component Gy, for which we
activate damage and plastic evolution in tension and let G{, > 0 be its
opposite value in compression. In other words, we assume that damage
and plastic evolution are activated for the same values in tension (at
Gy, = GY)) and in compression (at G|; = —GY,). Thus, we have from
(21)-(51)-(52)-(53)-(54)-(59) the following relations,

LG!, =-Blog(1-D") = —, LG§1=—BIOg(1—DZ”")=—_'7’

EIR

International Journal of Solids and Structures 297 (2024) 112844

which yield the identifications of the remaining constitutive coefficients
as a functions of G’ll and GY,s

t
ol =K' LG\, D" =1-exp it}
n n 11° t B ’

. (60)
¢ = kLGS, D™ =1- _Loy
o, =k, I = exp 3 .

By analyzing the ends of the elastic stages in Figs. 1 and 3 we guess the
following values the strain-thresholds,

G\, =00003, G =-0.0032. (61)

It is worth to note that it is also possible to use the CDP (Concrete Dam-
age Plasticity) model (Simulia, 2014; Qingfu et al., 2020) to achieve
similar values for the identifications (61). A parametric analysis can
also be done for the characteristic damage displacement B. With the
following hypothesis,

B=15%10"m, (62)

we report the identifications of the remaining constitutive coefficients
from (60)-(61)-(62)

7 2 8 2
o‘il =1.61x10" N/m~, (7; =5.56x10° N/m~, D;"” =0.181, D:”” =0.882.
(63)

We note here that damage-mechanism that drive the mechanical re-
sponse of UHP FRC are not investigated in a way that it is possible
to distinguish normal and tangential ones. For this reason, we use a
unique characteristic damage displacement B in (62).

5. Numerical simulations of the 2D problem
5.1. Definition of the problem for the tension/compression case

Let us solve the problem for a squared shape body B with those
boundary conditions defined in Fig. 4.

If the imposed displacement § () is positive, then we are in the
tension case. Besides, after an initially increasing function of time let us
have a subsequent unloading stage as it is shown on the top-left-hand
side of Fig. 5. In formulae we have

. 2mt
s =ésin=—, e, (64)

where §, is the maximum imposed displacement, T is the oscillation
period and 7, the final time of the simulation. In tension and compres-
sion the final time is r, = 37/10, that is greater than T//4 to show the
mentioned unloading stage. Besides, in shear the final time is r, = T/2
in order to show the complete unloading stage.

According to the geometry of Fig. 4, we assume that the body B is
a square of size A

A =100 mm. (65)
The displacement field
u=X+ y(X,1) (66)

of the continuum body B is induced by the particular boundary condi-
tions prescribed in Fig. 4 for all the points X of the domain B without
any need of Finite Element simulations,

u, =0, VX€EB. (67)

Thus, the components of the Green-Saint-Venant strain tensor are
derived by insertion of (67), (11) and (66) into (10),
2
5@ [ 1(60
G“=T+§<T> s GlZ=G22=O’ (68)
the first of which is represented on the top-right-hand side of Fig. 5.
In this case, the qualitative evolution of displacement and strain is the
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Imposed displacement, shear case
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Imposed strain, shear case

Fig. 5. Imposed displacement on the left-hand side and the components G,, (t) or G,, () of the imposed strain on the right-hand side, linked via the nonlinear relation (68). In
the first row, we plot the tension case. In the second row, we plot the compression case. In the third row, we plot the shear case.

same because the nonlinear addend in (68); is negligible. It is worth to
note that elimination of those supports along the horizontal boundaries
in Fig. 4 would imply non-homogeneous deformation and therefore
the necessity of a Finite Element simulation for the calculation of the
displacement field, that will be therefore different of (67).

It is worth mentioning that the displacement and strain fields in
compression have the same representation of eqns. (67)-(68) but with
opposite sign of the imposed displacement & (¢). They are represented
in the second row of Fig. 5.

The normal and the squared tangent displacement from (8) and (9)
yield,

2
6@ 1 (6@
_ 29 _ 2
u, =LG | cos“f=L |:T+§ <T> :|cos 0, (69)
5@ . 1(35m\ ’
u? =4L°G),G,, (cos® 6 —cos* 0) = <L [T +5 (T) ] sin20> ,
(70)

where a standard parameterization of the unit vector ¢ has been used

in terms of an angle 0, i.e.,
¢y =cosf, & =sind. (71)

The stress response is given in terms of the components S, S}, and
S, of the stress tensor in (17), with the use of (68), 3,

S =Py +CynGr. Sp=Pp+Cp Gy, Sy =Py +Cy Gy,

that, by insertion of (15) and (16), implies the following form of the
stress tensor components,

2r
S =—L/ [k (1= D,) (% = 25) cos? 6] a0 + 72)
0

2z
+G“L2/ [k, (1= D,)cos*0 +k, (1 - D,)sin? 20] do.
0
2z )
- ' ;
Sn=-1 [ [k, (1= D,) (% - 25) sin® 0] do + 73)
27
+G“L2/ sin® 0 cos® 0 [k, (1 - D,) — 4k, (1 - D,)] do,
0
2z
Slzz—L/O [y (1= D,) (% = 75 ) sinocos 0] do + 74)
2r
+G”L2/ sin@ cos 6 [k, (1 - D,)cos* 0 — k, (1 - D,) [2cos20]] dO
0
Let us analyze the horizontal stress S,. In the elastic phase (where all
the damage and plastic descriptors are null) it is a linear function of
the imposed strain G,,. The coefficient of such a linear dependence,

i.e. the component C,;,, of the stiffness tensor, can be interpreted as
an equivalent stiffness,

2r
oy ) =Cyypp = L2/0 [k, (1= D,)cos*0+k, (1-D,)sin*20] do
(75)

that evolves in time according to the evolution of damage descriptors
D, and D,. The equivalent stiffness in (75) provides a natural definition
of an equivalent damage variable d,, (1), viz.,

keg ) = kY, [1=deg ()] . (76)

where kgq is the initial value k,, (0) of the equivalent stiffness k,, (1),

27
keq (0) = kY, = L? / [k, cos* 0 + k, sin® 20] dO = %szn + L%k,
0

77)
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It is worth to note that in those tension and compression cases that are
here defined, the orientations are all in tension or all in compression.
This is the reason why k, in (77) is k; in tension and k; in compression.
Finally, the equivalent damage variable d,, () can be easily computed
from (75)-(76)-(77),
keg (O
KO,

dog() =1~ 78)
It is worth to note that the equivalent damage evolution in (78) does
not give a complete description of the material behavior that can be
deduced in this model. On the one hand, the load prescribed in Fig. 5
induces also (i) an evolution of the load free configuration from PP;; that
can be calculated by the first addend of (72) and (ii) a lateral reaction,
because of Poisson effect, that can be deduced by the component
S,, in (73). On the other hand, the initial isotropic sample becomes
anisotropic because damage and plastic variables evolves according to
normal (69) and tangential (70) displacements that depend both upon
the orientation 6. This implies, e.g., that the ratio

(C]l]l

Can

between horizontal and vertical stiffness, initially equal to the unity
value because of the assumed isotropy of the initial condition, becomes
lower than 1. The reason is that the horizontal deformation is higher
than the vertical one and therefore the corresponding stiffness is au-
tomatically reduced as a consequence of the deformation. The formal
definitions of the equivalent damage (78), with the use of (75) and (77),
and of the anisotropic index (79), with the use of (15), are the same in
tension and in compression and will be computed in Sections 5.4.1 and
5.4.2.

Besides, the fourth order stiffness tensor C can be reduced to a
second order one, namely ¢, with the use of the Voigt notation for the
representation of (17) in the following form,

r(n= (79)

Sn Sh Ciin Ciizz 2Cypp G
Sy =] S22 |+ Cuxn  Cupn 2Cip Gy |
S S 2C1p 2Cypn 2Cyyp Gy,
where the second order stiffness tensor ¢ is
Ciin Ciizz 2Cpp
¢= Ciin Crp  2Cipp (80)
2Cn 2Cppn 2Cyyp

The three eigenvalues of the second order stiffness tensor ¢ have an
important interpretation. In fact, two of these eigenvalues are the same
in the isotropic case and another measure for anisotropy is their split.

It is worth to finally note that the tension/compression asymmetry
in the initial elastic stage induce a non-symmetric Poisson effect. To
prove this fact, let us calculate the horizontal S|, and the vertical .S,,
stress components by insertion of the null damage condition (49) and
the identifications (46)—(48) into (72)-(73) in compression,

Si=6uLl*g <3kf7 +4kr> =304, = G\ E A, (81)
T

Sp =Gy 122 (k; —4k,) =SP4, = Gy E.vypA., (82)

and in tension

Si=6y 2% (3k; +4k,) =54, = G| EA, (83)

T 1
Sn=GyL*g <k; —4k1) =534, =Gy, [szEC +=

3 (- EC)] A,.(84)

Thus, it is evident that the Poisson ratio v5, in compression is from
(81)-(82),
. _S»

Vo = =Vyp,
2D S 2D
which is different from that v} in tension, that can be computed by
(83)-(84),
S E

yooSe_ B 1 E (85)
=5, PE T3 E )

10
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Fig. 6. Shear (Dirichlet-type) boundary conditions for a squared shape body B induce
homogeneous deformation reported in (87).

As a matter of facts the tension/compression symmetric condition E, =
E, implies from (85) an equivalent value v; = v} of the Poisson ratio
both in tension and in compression. However, in our case, E,/E, = 2
and therefore from (56) and (85), we have vé p = 0.07.

5.2. Definition of the problem for the shear case

Let us solve the problem for the squared shape body B with the same
size (65) but with different boundary conditions defined in Fig. 6.

The displacement field u of the continuum body 73 is induced by the
particular boundary conditions prescribed in Fig. 6 for all the points X
of the domain B without any need of Finite Element simulations,

5()
=—2X,,
u a2
where we assume the same function 6 () of eqn. (64). The components
of the Green—-Saint-Venant strain tensor are derived by insertion of (86),

(11) and (66) into (10),
1780\
On =3 (%) ’

the second of which is represented on the bottom-right-hand side of
Fig. 5. The third component is due to the geometrical nonlinearity of
the formulation and is negligible for the present small deformation case.

The normal and the squared tangent displacement from (8)-(9) and

u, =0, VX € B, (86)

5(t
G, =0, G,= ZLA)’ (87)

(87) yield,

u, = ZL% (sin 20 + % cos? 0> , (88)
2

uf = [L(%) <c0520+%sin26>] , (89)

where the parameterization (71) has been used for the orientation é. It
is worth to note that for small displacement and positive §, we calculate
from the sign of sin26 in (88) the tension/compression discrimination
in the present shear case,

4 3
oe(05)o(=F). = k=

7 3z e
9€<E,ﬂ)u(7,2ﬂ>, > k=

The stress response is given in terms of the components S, Sy, and
S, of the stress tensor in (17), with the use of (87),

(90)

(91)

S11 =Py +2C112G 12 + Ci 122G,
Sy =Poy +2Cp15G 13 + Cypnn Gy,
812 =Py +2C 515615 + Cipn Gy,
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that, by insertion of (15) and (16), implies the following form of the
stress tensor components,

2r
Sy =—L/0 ky (1= D,) (% = 75 ) cos® 0d0 + ©2)

2z
+2612L2/ cos@sind [k, (1 - D,)cos* 0 —k, (1 - D,)2cos26] d6 +
0

2z
+022L2/ sin® 0 cos? 0 [k, (1 - D,) — 4k, (1 - D,)| do,
0
2
Sy :—L/ ky (1= D,) (4= 22) sin® 0do + ©3)
0
2
+2G12L2/ sinfcos [k, (1 - D,)sin*0 + k, (1 - D,)2cos20] d0 +
0

2z
+GyL? /
0

2z
—L/O ky (1=D,) (4= 22) sin6 cos 00 +

2z
+2G, L? /
0

2z
+G22L2/ sin@ cos 8 [k, (1 - D,)sin® 6 + k, (1 - D,) [2cos20]| d6.
0

[k, (1= D,)sin*6 +k, (1 - D,)sin20] do,
94

[k, (1= D,)sin?cos? 0 +k, (1 - D,) cos? 20 df +

In order to propose an equivalent stiffness K, ® also for the shear
case we analyze in the elastic phase (where all the damage and plastic
descriptors are null) the shear stress S,. It is a linear function of the
shear strain G,,. The coefficient of such linear dependence, i.e. twice
the component C;,;, of the stiffness tensor, can be interpreted as an
equivalent shear stiffness,

2
kS, () =2Cpyy =217 / [k, (1= D,)sin*@cos? 0 + k, (1 - D,) cos? 20] d§
0
(95)

that evolves in time according to the evolution of damage descriptors
D, and D,. The equivalent shear stiffness in (95) provides a natural
definition of an equivalent shear damage variable djq ), viz.,

K, 0 =k5 [1-d3, 0] (96)

where k(;; is the initial value k3, (0) of the equivalent shear stiffness
kS , - Such an initial stiffness,

27
keq (0) = kS0 =217 /0 [k, sin® @ cos? 6 + k, cos? 26] d6, 97)

because of tension/compression asymmetry and the use of (90)—(91) is
Zg2
4
The equivalent shear damage variable d; (1) can be easily computed
from (96),

s0 __ c t
KD = T2 (ke + K+ 8k, ).

K,

s0
keq

(=1~ : (98)
where (95) is used for the graphic of Fig. 15.

Even in this shear case, it is worth to note that the equivalent
damage evolution in (98) does not give a complete description of the
material behavior that can be deduced in this model. On the one hand,
the load prescribed in Fig. 5 induces also (i) an evolution of the load
free configuration from IP;, that can be calculated by the first addend of
(94) and (ii) normal reactions can be deduced by the components S,
and S, in (92)—(93). On the other hand, the initial isotropic sample
becomes anisotropic because damage and plastic variables evolve ac-
cording to normal (88) and tangential (89) displacements that depend
both upon the orientation 6. This implies, e.g., that the ratio

C; jhkn.ln n

Tnlp
oy = Y ©9)
(Cijhkn.znjz.n

11
"k
2.2

i

11

International Journal of Solids and Structures 297 (2024) 112844

between two oblique stiffnesses, one along the oblique direction ni1 =
8;1+5;, and the other along the oblique direction n? = —§;, +35,,, initially
equal to the unity value because of the assumed isotropy of the initial
condition, becomes different than 1.

It is worth to note finally a qualitative difference between ten-
sion/compression cases and the shear case. In order to explain this
concept in an easy way we consider the small displacement approxima-
tion. On the one hand, in the tension/compression cases and for a given
value of the strain component G,,, normal and tangential displacement
reach from (69) and (70) the same maximum values

max __ , max __
u,"" =y =LGy,.

On the other hand, in the shear case and for a given value of the strain
component G,,, normal and tangential displacement reach from (88)
and (89) different maximum values

max __ max __
w, = 2ul™ =2LGy,.

In other words in the shear case, as it is expected, the maximum tan-
gential displacement is larger than the maximum normal displacement.
This implies that we have different regimes after the elastic one. The
reason is that not only the thresholds in tension and in compression are
reached at different level of the shear component G, because of the
different values prescribed in (63) but also the normal and tangential
damage thresholds, see e.g. (51)-(52), are now reached at different
values of the shear component G ,.

5.3. Numerical method for the homogeneous simulations

Some assumptions have been made in the initial stage of the process.
The first is the initial null conditions not only for the displacement field
u,
wX,t=Ty) =0, vX eB
but also for damage and plastic descriptors:

VX € B,Vé € S' (100)

VX € B,Yé € S! (101)

D@ X,1=Ty) =0,
X6 X,1=Ty) =0,

D, X,t =Ty =0,
K6 X,1=Ty) =0,

Isotropic initial condition is therefore deduced according to the eqns.
(15)-(16). The algorithm of the simulation is very simple and deserves
to be mentioned.

We firstly consider the imposed displacement § at the initial time
step t = T} and deduce for that time, the displacement field u from (67)
or (86). In the general non-homogeneous case such a deduction is not
an easy task and a Finite Element approximation is needed. However,
the purpose of this paper is to show the validity of a certain class
of constitutive relations and to do this we have avoided to consider
boundary conditions inducing non-homogeneous deformation. We have
therefore selected a particular kind of boundary conditions for which
homogeneous deformation is the solution and therefore there is no need
of Finite Element modeling. Thus, the strain field G is calculated from
(68) or (87) for every positions VX € B and it is also calculated the
normal and tangential displacement from (69)-(70) or (88)—(89) for
every positions VX € B and orientations V¢ € S!. Thus, we calculate
the KKT conditions (32)-(33)-(34)—(35) and calculate for the time step
t = T, damage and plastic descriptors:

VX € B,Vé € S!,
VX € B,Vé € S'.

D@ X.1=T)),
XX 1=T),

D (¢ X,t=T)),
K@ X, 1=T),

Thus, isotropic condition is not satisfied anymore and therefore the
anisotropic stiffness tensors can be calculated analytically from (15)-
(16) to deduce the stress components from (72)-(73)—(74) at time ¢t =
T,.

We secondly consider the imposed displacement § at the second
time step ¢ = T, and repeat the procedure for all the time steps.
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Fig. 7. Stress-strain response for the tension case. Numerical and experimental results are shown together.

5.4. Results of the homogeneous simulation

In this Subsection we show the numerical results for the homoge-
neous cases presented in Sections 5.1 and 5.2 and with the numerical
method explicited in Section 5.3.

5.4.1. Tension case

The tension case is characterized with the positive value of the
imposed displacement (64)

6; = 1.8 mm.

In Fig. 7 we show the stress-strain response for the tension case. We
have qualitative agreement with the experimental results reported in
Fig. 3.

After the first elastic stage, at G;; = G|, damage and plastic
variables are activated by both the KKT (32)-(33)-(34)—(35) and initial
(100)-(101) conditions. Because of the homogeneity of the strain, their
evolution are independent upon position. However, because of the
uniaxial loading, they are a function of the orientation. We report such
a dependence in Fig. 8. We observe that normal damage and plastic
tension accumulation displacement are higher for those orientations ¢
that are close to the uniaxial loading direction é,, where the normal
displacement is higher, i.e. with 6 close to kx with k being an integer
number k = 0,1, 2, .... Besides, the tangential damage is higher where
the tangential displacement is higher, i.e. with 6 close to ;—’ + k% with
k being an integer number k = 0,1,2,.... In this tension case all the
orientations are in tension. Thus plastic accumulation in compression is
null for every orientation and is not reported. The evolution of damage
and plastic descriptors are shown in Fig. 8 at different levels of the
applied strain. The first is, according to (61); at the strain threshold
of the elastic phase. The second is at 10 times such a threshold. The
third is an intermediate one. The fourth is at the maximum value of the
applied strain and the last is at the end of the time history. We observe
that between the fourth and the fifth strain level we are in an unloading
phase and therefore the damage and plastic descriptors do not evolve.
Evolution of damage variables induces a non trivial evolution of both
the equivalent damage d,, from (78) and of the anisotropic index r
from (79). Besides, two of the eigenvalues of the second order stiffness
tensor defined in (80) are initially the same and the induced anisotropy
is shown by the splitting of such two eigenvalues. The corresponding
calculated functions are reported in Figs. 9. In particular, in Fig. 9a we
show the equivalent damage d,, and the anisotropic index r defined
in (98) and (99), respectively, and in Fig. 9b we show the splitting of
the two eigenvalues of the second order stiffness tensor for the tension
case.
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5.4.2. Compression case
The compression case is characterized with the negative value of
the imposed displacement (64)

6; = —1.8 mm.

In Fig. 10 we show the stress—strain response for the compression case.
We have qualitative agreement with the experimental results reported
in Fig. 1.

After the first elastic stage, at G;; = -G, damage and plastic
variables are activated by both the KKT (32)-(33)—(34)—(35) and initial
(100)-(101) conditions. Because of the homogeneity of the strain, their
evolution are independent upon position. However, because of the
uniaxial loading, they are a function of the orientation. We report such
a dependence in Fig. 11. We observe that normal damage and plastic
tension accumulation displacement are higher for those orientations é
that are close to the uniaxial loading direction é;, where the normal
displacement is higher, i.e. with 6 close to kx with k being an integer
number k = 0,1,2,.... Besides, the tangential damage is higher where
the tangential displacement is higher, i.e. with ¢ close to § +k7 with k
being an integer number k =0, 1,2, .... In this compression case all the
orientations are in compression. Thus plastic accumulation in tension is
null for every orientation and is not reported. The evolution of damage
and plastic descriptors are shown in Fig. 11 at different levels of the
applied strain. The first is, according to (61), at the strain threshold of
the elastic phase. The second is at 2 times such a threshold. The third is
an intermediate one. The fourth is at the maximum value of the applied
strain and the last is at the end of the time history. We observe that
between the fourth and the fifth strain level we are in an unloading
phase and therefore the damage and plastic descriptors do not evolve.
Evolution of damage variables induces a non trivial evolution of both
the equivalent damage dyg from (78) and of the anisotropic index r
from (79). Besides, two of the eigenvalues of the second order stiffness
tensor defined in (80) are initially the same and the induced anisotropy
is shown by the splitting of such two eigenvalues. The corresponding
calculated functions are reported in Fig. 12. In particular, in Fig. 12a we
show the equivalent damage d,, and the anisotropic index r defined in
(98) and (99), respectively, and in Fig. 12b we show the splitting of the
two eigenvalues of the second order stiffness tensor for the compression
case.

5.4.3. Shear case
The shear case is characterized with the positive value, from (64),
of the parameter §,,

6; = 1.8 mm.

In Fig. 13 we show the stress—strain response for the shear case. Here,
we do not have experimental results for comparison. Thus, we show the
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Fig. 8. Damage and plastic variables evolution in the tension case. All the orientations are in tension and therefore plastic accumulation in compression is null.

Equivalent damage and anisotropic index, tension case Stiffness matrix eigenvalues, tension case
[MPa]
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1500

08

0.005 0.010 0.015 0.005 0.010 0.015

Fig. 9. (a) Equivalent damage and anisotropic index, defined in (98) and (99), in the tension case are plotted both as a function of the imposed strain. (b) Three eigenvalues of

the second order stiffness tensor defined in (80).

results for the purpose to show the phenomenology of the presented conditions. The activation of damage and plastic descriptors occur
before for those orientations that are in tension, then tangential damage

is activated and then for those orientations that are in compression
according to the comments at the end of Section 5.2. Because of the

constitutive prescriptions.

After the first elastic stage, damage and plastic variables are ac-
tivated by both the KKT (32)-(33)-(34)—(35) and initial (100)-(101)

13
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Homogeneous stress-strain response, compression case
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Fig. 10. Stress-strain response for the compression case. Numerical and experimental results are shown together.
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Fig. 11. Damage and plastic variables evolution in the compression case. All the orientations are in compression and therefore plastic accumulation in tension is null.
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Equivalent damage and ani Stiffness matrix eigenvalues

(a) (b)

Fig. 12. (a) Equivalent damage and anisotropic index are plotted as a function of the imposed displacement for the compression case. (b) Three eigenvalues of the second order
stiffness tensor defined in (80).

Homogeneous stress—strain response, shear case

Fig. 13. Stress-strain response for the shear case.

homogeneity of the strain, the stress strain evolution of Fig. 13 is because the orientations in tension and that in compression change,
independent upon position. However, because of the shear loading, at that point, the role and the equivalent stiffness increases.
orientations evolve in a different way. We report such a dependence

in Fig. 14. We observe that normal damage and plastic tension ac- 6. Conclusion and outlook

cumulation displacement are higher for those orientations ¢ that are

close to the oblique direction é; + é,, where the normal displacement The main thrust of the work is the adaptation of the granular
is positive and higher. Thus, normal damage and plastic compression micromechanics approach (GMA) developed in Barchiesi et al. (2021),
accumulation displacement are higher for those orientations ¢ that are Misra and Poorsolhjouy (2015), Misra and Singh (2015), Placidi et al.
close to the oblique direction é; — é,, where the normal displacement (2021), Timofeev et al. (2021), to the modeling of Ultra High Perfor-
is negative and higher in modulus. Besides, the tangential damage is mance Fiber Reinforced Concrete (UHP FRC). We have shown that by
higher where the tangential displacement is higher, i.e. with 6 close to properly defining the effective grain-pair damage-elasto-plastic spring
k% with k being an integer number k = 0,1,2,.... In this shear case elements in the normal and tangential directions, the response of UHP
the orientations are some in tension and some in compression. Thus, FRC under macro-scale homogeneous deformation can be modeled.
both plastic accumulation in compression and in tension are not null The novel aspects of the introduced parameterized effective grain-pair
for some orientations and they are therefore both reported. Evolution of damage-elasto-plastic spring elements include tension-compression asym-
damage variables induces a non trivial evolution of both the equivalent metric normal stiffnesses and characteristic damage relative displace-
shear damage d‘e‘q from (98) and of the anisotropic index r* from (99). It ment and the control for relative displacement necessary to acti-
is worth to note that, because of the tension-compression asymmetry, vate damage and plastic evolution. A detailed methodology for deter-
the sheared sample is anisotropic from the very beginning. This is mination of effective grain-pair model parameters from macro-scale
shown by the fact that none of the eigenvalues of the second order measurements and their physical interpretation are discussed. The
stiffness tensor defined in (80) are initially the same. The corresponding model is then applied to predict UHP FRC response under macro-
calculated functions are reported in Figs. 15. In particular, in Fig. 12a scale homogeneous deformation when subjected to uniaxial extension
we show the equivalent damage d;, and the anisotropic index r* and and compression as well as pure shear deformation. The prediction
in Fig. 12b we show the three eigenvalues of the second order stiffness shows the model capability for describing gradual post peak softening
tensor for the shear case. It is worth to note that the equivalent damage that UHP FRC typically exhibits in both homogeneous extension and
is a monotonic variable both in the loading and in the unloading stages. compression. More importantly, the model predicts that under such
However, in the abrupt switch between these two stages the tension— macro-scale homogeneous deformation, the evolution of damage and
compression asymmetry makes the equivalent damage to decrease plasticity are directional, indicating an evolution of micro-scale me-

chanical and structural attributes that results in macro-scale anisotropy.

15
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Fig. 14. Damage and plastic variables evolution in the shear case.
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Fig. 15. (a) Equivalent shear damage and anisotropic index are plotted as a function of the imposed shear strain. (b) Three eigenvalues of the second order stiffness tensor defined

in (80).

The directional nature of evolution that GMA based model is able to
elaborate is particularly interesting for the case of pure shear in which
certain grain-pair orientations experience tension while others undergo
compression resulting in a non-monotonic evolution of macroscopic
anisotropy. Finally, it is noteworthy that the derived model can be
used to predict unloading to the stress free state (with non trivial
plastic deformation) or to the strain free state (with the non trivial pre-
stress prescribed in (16)). Future work will consider implementation of
the approach to simulate cases with non-homogeneous deformations,
such as the three-points bending test, in which the loading path at
various material points can be unique and complex including certain
materials suffering unloading while others experience loading. For such
problem, second gradient theories are needed to not only regularize
the numerical computations but to correctly describe the formation
of strain localization zones and eventual fracture as in Placidi et al.
(2021), Timofeev et al. (2021).
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