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A B S T R A C T

There is a growing interest in the application of UHP FRC (Ultra-High Performance Fiber-Reinforced Concrete)
which has been under vigorous development since its inception over two decades ago. The advantages of these
advanced materials is that they overcome the problems that plague conventional concrete, these include among
others low residual strength and low tensile strength, poor crack control and resistance to crack propagation,
which leads corrosion of the rebars and spalling. The aim of this paper is to provide a granular micromechanics-
based model to describe the deformation behavior of UHP FRC material as it gives a robust method to link the
micro-scale mechanisms with the macro-scale performance of materials with granular textures. In this model,
the micro-scale is described by damage-elasto-plastic spring elements that represent the effective grain pair
interactions decomposed into the so-called normal and tangential directions. Since the grain-pairs are variously
oriented, the macro-scale response is obtained by integrating these interactions over the orientational space.
Here we specialize the granular micromechanic model for UHP FRC by introducing a novel expression for
the parameterized dissipation energy at the micro or the grain-pair scale. The newly introduced constitutive
parameters are identified using experimental results for uniaxial extension and compression tests. The model
is then applied to simulate the case of homogeneous compression, extension and shear to show the directional
evolution of damage and plasticity and the consequent emergent anisotropy.
1. Introduction

Portland cement concrete is among the most utilized construc-
tion material widely used in structural applications as reinforced con-
crete in building and bridge construction among others (Contrafatto
et al., 2012, 2016a,b; Scerrato et al., 2014). Conventional Portland
ement concrete suffers from a range of limitations, including low
ensile and residual strength, poor crack control and resistance to
rack propagation, spalling and workability (Khoury et al., 2002; Schre-
ler et al., 2002a,b). Ultra-High-Performance Fiber-Reinforced Concrete
UHP FRC) is expected to overcome these limitations (Grimaldi and
uciano, 2000; Caporale et al., 2006). Many of the advantages and

limitations of conventional Portland cement concrete can be traced

to the structure–property relationships at different scales (Fabbrocino
and Farina, 2017; Giorgio et al., 2020a; Greco et al., 2017; Everstine
and Pipkin, 1973; Hu et al., 1985; Turco et al., 2016) beginning from
their chemical building blocks including minerals, such as calcium
silicate/aluminate hydrates (Gawin et al., 1999, 2005a,b; Majorana
et al., 1998; Dharmawardhana et al., 2014; Misra and Ching, 2013).
A modeling approach based upon the atomistic scale is fraught with
insurmountable challenges due to the complex composition, largely
ill-defined atomic structures with substitutions and atomic defects,
multi-scalar porosities, prohibitive computational expense and so on.
In this case, a convenient point of departure, which can link the macro-
scale behavior in a practical way to the building blocks is through
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Table 1
Concrete Mix design used in UHP FRC specimens.

Material Cement Fly Ash Sand 8 mm Water Plasticizer Fibers

Dosage (kg/m3) 800 200 925 195 18 20
the meso-scale of mineral agglomerates, or grains (Misra and Poor-
solhjouy, 2015; Misra and Singh, 2015). To this end, the granular
micromechanics approach (GMA) provides a paradigm for obtaining
continuum models that link to effective grain interactions (Misra et al.,
2021). The GMA has been particularly successful in developing micro-
macro linked models that predict a range of emergent phenomena,
such as loading induced anisotropy evolution that could be caused
by micro fracturing or microstructure changes under imposed con-
ditions (Timofeev et al., 2021; Placidi et al., 2021), elastic chirality
due to peculiar grain-pair elastic interactions (Giorgio et al., 2020b;

iallella et al., 2023), emergent chirality due to directional evolution
f damage (Timofeev et al., 2021) among many others. The elastic
hiral behavior as well as the evolving chirality exhibited by such
aterials is in fact predictable only by considering generalized (higher-

rder or higher-gradient) continuum theories (Auffray et al., 2015b)
hat naturally arise through the application of GMA. The significance
f higher-gradient or strain gradient theories have been discussed
idely (Auffray et al., 2015a) and its application goes well beyond the

egularization of computation for mesh independency (Ambati et al.,
015; Bourdin et al., 2000; Bourdin, 2007a,b; Bourdin et al., 2008;

Del Piero et al., 2007; Francfort and Marigo, 1998; Li et al., 2016) to
revelation of a range of hitherto unrecognized, latent or less understood
phenomena such as chirality and size dependency of strain localization
zones to micromechanisms (Abali et al., 2017; Placidi and Barchiesi,
2018). In order to accomplish such higher-gradient theories, variational
methods (dell’Isola et al., 2000) are needed to properly establish the
boundary conditions and the governing equations. Moreover novel
computational techniques (Battista et al., 2016; Greco and Cuomo,
2013, 2014; Ramaglia et al., 2018) are also necessary for accomplishing
numerical simulations correctly and accurately by changing the set of
basis functions. Variational methods are important to develop proper
models for metamaterials (dell’Isola et al., 2016, 2015; Fabbrocino and
Carpentieri, 2017; Mancusi et al., 2017) and are able to consider not
only conservative systems but also dissipative ones (Erden Yildizdag
et al., 2023; Lancioni and Royer-Carfagni, 2009; Marigo, 1989; Reddy,
2011a,b) with the use of proper hemivariational generalization.

Here we apply the GMA, which we have previously applied to con-
ventional cement concrete (Poorsolhjouy and Misra, 2017; Timofeev
et al., 2021), to describe the behavior of UHP FRC. From the viewpoint
of GMA, the key aspect that characterizes a particular material and in
this case for example that distinguishes UHP FRC from the conventional
cement concrete, is the micro-scale elastic and dissipation behavior
represented by the effective grain-pair interactions decomposed into
the so-called normal and tangential directions. Dissipation phenomena
has been widely discussed in continuum mechanics (Aifantis, 1984,
1987, 1992) from macro-scale as well as micro-scale viewpoints (Scer-
rato et al., 2015; Altenbach and Eremeyev, 2008; Giorgio et al., 2016,
2017). Dissipation due to material irrecoverable damage or plastic
deformations in materials such as UHP FRC can take place through
a variety of interacting mechanisms at structural scales ranging from
the atomic through many intervening structures, such as grain bound-
aries and interphases, to those scales at which we consider continuum
models. At each scale, there are a myriad of mechanisms that interact
to produce damage and plasticity related dissipation in relation to
the applied boundary actions. In GMA, this complex of dissipation
mechanism is described through the effective grain-pair interactions
as the representative of all the myriad lower scale mechanisms. In
a material with random isotropic microstructure, the effective grain-
pair are considered to be equally likely oriented in all directions and
the macro-scale (or continuum material point) response obtained by
integrating these interactions over the orientational space. We remark
2

that the microstructural features that may be included or emphasized
depend upon the modeling approach. In GMA methodology elaborated
in this work, the orientation of the effective grain-pair is the key mi-
crostructural feature that appears in the model. As we have described,
the effective grain-pair is conceived to represent the elastic-storage and
dissipation phenomenology in given orientations. In this sense, the con-
tinuum model can be devised to describe various inherent anisotropies
in its reference (or unloaded) state. Moreover, it is notable that during
prescribed boundary actions, the deformation suffered by a continuum
material point results in the various grain-pair directions experiencing
different loading histories resulting in directional evolution of damage
and plasticity and an overall evolving macro-scale anisotropy.

The structure of this paper is as follows. In Section 2 we report the
basic experimental characteristics of UHP FRC, some of which we aim
to model in the paper. In Section 3 we recap the granular microme-
chanic approach we use in the rest of the paper. The formulation is
here synthetic and reduced for the specific homogeneous case that is
investigated with the used simplified boundary conditions of Figs. 4 and
6. As a consequence, we avoid the derivation of strain gradient regu-
larization terms in the elastic energy in Section 3.1, already presented
in other publications, but we present a novel form of the dissipation
energy in Section 3.2 that is able not only to (i) provide asymptotically
and exponentially, in (36)–(37), the failure mechanism, but also to
(ii) consider a predefined threshold (in tension and in compression
according to (21)) to activate not only plastic, see e.g. (38)–(39), but
also damage, see e.g. (36)–(37), phenomena. In Section 4 we expose
the used methodologies for the numerical characterization of those
parameters introduced in the energy functional reported in (22) to
serve the experimental data of Sections 2.3 and 2.4. In Section 5 we
present the promised numerical simulations. To do this, we define the
investigated cases in Sections 5.1 and 5.2 and show the simulations in
Section 5.3 with the numerical method in Section 5.3. Conclusions and
outlook end the paper in Section 6.

2. Experimental results of UHP FRC

2.1. The mix design of the material

Mechanical properties of concrete are determined by the concrete
mix design that consists of the dosage of each composing material,
that is the proportions of cement, aggregates, additives, and water. The
concrete mix design for the UHP FRC modeled and simulated in this
paper has been developed in earlier works (Abdou et al., 2022). Using
this mix proportion, test samples were fabricated using a UHP FRC mix
that is self-consolidating. The key for producing this type of concrete is
the choice of mean equivalent aggregate diameter, defined as the mean
of all the aggregates based on the 500 g sample classified through sieve
analysis. Lower equivalent diameter of the aggregates results in better
performance in terms of flowability and viscosity of fresh concrete. For
the UHP FRC mix, 8 mm equivalent diameter aggregates were used. In
addition, by substituting a significant amount of Portland cement with
pozzolans such as fly ash, silica fume or others, along with the fibers
either made of PP material (polypropylene) or steel, helps in achieving
higher compressive strengths (Bragaglia et al., 2021a,b; D’Ambra et al.,
2019; Grande et al., 2020). The concrete mix of the samples modeled
in this paper include the PP fibers and a substitution of part of the
cement dosage by fly ash. The fibers are expected to play an important
role in the strength of post crack stage, when the concrete cracks and
the fibers (i) hold the concrete element together and (ii) prevent the
opening of the crack any further. The post cracking effectiveness of
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Fig. 1. UHP FRC Compressive Experimental Test Results According to the EN 12390 standard (Stress 𝜎𝑐 = −𝑆3𝐷
11 - Strain 𝜀𝑐 = −𝐺11 Graph). Average (over 3 samples) response is

shown, with a variance percentage of 10.
Table 2
Polypropylene Fibers’ Properties.

Length (mm) 55
Equivalent Diameter (mm) 0.8
Density (Kg/m3) 910
Tensile strength (MPa) 560
Elastic Modulus (MPa) 3900
Shape Crimped
Melting Point (C◦) 160

fibers in UHP FRC are measured with both the residual strength and
the tensile strength (Abdou et al., 2022).

The following tables 1 and 2 give the concrete mix design dosages
and the properties of the polypropylene (PP) fibers used in the tests,
respectively.

2.2. General aspects of the experimental tests

UHP FRC has a high compressive strength at 28 days (see Sec-
tion 2.3). Other characterizations are done with the direct tensile (see
Section 2.4) and three point loading tests according to EN 14651
(UNI/CT 021/SC 04 UNI/CT 021, UNI/CT 021/GL 03, 2015). The latter
is important because it gives the understanding of the behavior of the
fibers after the first crack in the concrete by insertion of an initial notch
in the middle of the lower side to govern the path of the crack. In
this test a displacement is applied in the upper middle part and both
force and CMOD (Crack Mouth Opening Displacement) are recorded.
The fibers prevent the failure of the structural element and limit the
crack opening in the sample. They also result in strength hardening
or softening. To focus the present work to homogeneous deformation
cases, we will consider the simulation of the three point bending test
in a future publication.

2.3. Compressive test

The compressive strength has been executed according to the EN
12390 (UNI/CT 009, 2022) standard where 3 samples of the concrete
mix have been cast in Abdou et al. (2022). Thus, they have performed
the tests with the results shown in Fig. 1, where we report the average
(over the 3 mentioned specimens) compressive stress vs the average
compressive strain with a variance percentage of 10. Each side of the
cubic specimens is 𝐴 = 100 mm and the stress is calculated by dividing
the applied force by the surface area of the cube face.
3

From Fig. 1 the experiment starts with a linear elastic stage,

−𝑆3𝐷
11 = 𝜎𝑐 = 𝐸𝑐𝜀𝑐 = −𝐸𝑐𝐺11, (1)

where the compressive stress 𝜎𝑐 is identified with the opposite of the
component 𝑆3𝐷

11 of the stress tensor in a 3D model, 𝜖𝑐 is the compressive
strain, that is identified with the opposite of the component 𝐺11 of the
strain tensor (properly defined in (10)) and with an initial modulus of
elasticity in compression that can be easily extrapolated,

𝐸𝑐 ≅ 45.55 GPa (2)

At the end of this stage, the peak is reached. It defines the compressive
strength of the tested concrete which, in this case, is around

𝜎max
𝑐 = 143 MPa.

Beyond the first elastic stage, a softening one occurs. A normal tradi-
tional non fiber reinforced concrete would undergo an instant failure
and the test would terminate at this point. However, this is not the case
with the UHP FRC because of the presence of the fibers. In fact, beyond
the peak, a plateau starts where the fibers intervene in the deformation
process preventing a sudden failure. The material response is a gradual
softening with non negligible resisting force with higher strains.

2.4. Direct tensile test

With regards to the direct tensile test using a dog-bone specimen, the
dimensions of the sample in the neck area are 200 mm long with a cross
section of 150 mm × 80 mm as shown in Fig. 2. The choice of relatively
larger cross-section ensures sampling of sufficient randomly oriented
fibers to permit correct evaluation of the effect of fibers on the tensile
performance. Fig. 3 expresses the curve of the averaged (over the 3
samples that were experimentally tested) tensile stress, with a variance
percentage of 12, vs the average tensile strain. Even for the tensile case
we have an initial linear elastic behavior

𝑆3𝐷
11 = 𝜎𝑡 = 𝐸𝑡𝜀𝑡 = 𝐸𝑡𝐺11, (3)

where the tensile stress 𝜎𝑡 is identified with the component 𝑆3𝐷
11 of the

stress tensor in a 3D model, 𝜀𝑡 is the tensile strain, that is identified
with the component 𝐺11 of the strain tensor (properly defined in (10))
and the modulus of elasticity in tension is

𝐸 ≅ 21.5 GPa. (4)
𝑡
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Fig. 2. UHP FRC Tensile Test (Dog Bone) Specimen’s Dimensions.
Fig. 3. UHP FRC Direct Tensile Experimental Test Results (Stress 𝑆3𝐷
11 = 𝜎𝑡 - Strain 𝜀𝑡 = 𝐺11 Graph). Average (over 3 samples) response is shown, with a variance percentage of 12.
The linear elastic part is defined from the beginning to the peak, where
the ultimate tensile strength is measured,

𝜎max
𝑡 ≅ 9.12 MPa.

This value is much higher than any other normal concrete, e.g., for
the C25 case, which is one of the most commonly used concrete, the
tensile strength is typically 2.6 MPa. A normal non fiber reinforced
concrete would fail and the sample would break right after reaching
the peak. In the case of UHP FRC it can be seen that the sample starts
to undergo softening stage after the peak. Experimental tests performed
with different mix design have shown that the higher the dosage of
the fibers, the larger is the plateau after the peak. The sudden stress
drop events as extension progresses are likely due to the fiber–matrix
debonding and even fiber breaking. In any case the overall post peak
response is one of steady softening rather than catastrophic fracture due
to the resisting mechanism provided by the fibers.

Additional observations on the tests could be made as follows:
(a) The elastic stiffness is consistent in both tension and compression

test results, reflecting, in this stage, a similar but not identical behavior.
(b) The discrepancy between tension and compression test outcomes

is attributed to the material’s damage-plastic behavior. Notably, the ma-
terial exhibits distinct responses in the damage-plastic phase, wherein
fibers perform optimally under tension. This explains why the compres-
sion test does not show a significant increase in ultimate strength but
rather an improvement in sustaining resistance until failure.
4

(c) A stress–strain plateau is consistently observed just before failure
in each presented test. This phenomenon is attributed to the reinforcing
characteristics of fibers in concrete, allowing for increased deforma-
tions at higher stress levels until eventual failure of the element.

(d) All the aforementioned factors have been carefully considered
in the model and subsequent simulation to ensure the most accurate
representation of the data.

3. Homogenization recap within the framework of granular micro-
mechanics

3.1. The elastic strain energy density

In this continuum formulation, and for a given point 𝑿 of the
continuum body , we assume a damage-elasto-plastic pair interaction
for each orientation, that we denote by the unit vector 𝑐. The elastic
energy that we associate to each pair-interaction, according to the
same homogenization procedure adopted by Cauchy (Cauchy, 1828)
and Navier (Navier, 1827) almost 2 hundreds years ago, is therefore
integrated over all the orientations 𝑐, i.e. over the unit circle 1 in
the present 2D case, in order to obtain the elastic energy 𝑈 per unit
area, i.e. the elastic strain energy density. Besides, the elastic energy
associated to each orientation is assumed to be quadratic with respect
to two relative displacements, i.e. the normal displacement 𝑢𝜂 and
the tangential displacement 𝑢𝜏 , that we will define in (8) and (9),
respectively, as a function not only of the average distance 𝐿, but also
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𝑐

Fig. 4. Tension (with 𝛿 (𝑡) > 0)/compression (with 𝛿 (𝑡) < 0) boundary conditions for a
squared shape body  inducing homogeneous deformation reported in (68).

of the orientation 𝑐 and of the Green–Saint-Venant strain tensor 𝐺.
The pair-interaction elastic energy is also proportional to the damage
normal stiffness 𝑘𝜂,𝐷 and to the damage tangent stiffness 𝑘𝜏,𝐷, that are
reduced by the normal damage 𝐷𝜂 and by the tangent damage 𝐷𝜏 .
These stiffness and damage variables are all functions not only of the
point 𝑿 of the continuum body  but also of the orientation 𝑐 of the
unit circle 1. In formulae we have that the elastic strain energy density
𝑈 is defined as follows,

𝑈 = ∫1

[

1
2
𝑘𝜂,𝐷

(

𝑢𝑒𝑙𝜂
)2

+ 1
2
𝑘𝜏,𝐷

(

𝑢2𝜏
)

]

𝑑𝐴, ∀𝑿 ∈  (5)

where 𝑑𝐴 is the area element on the unit circle 1, the elastic part 𝑢𝑒𝑙𝜂 of
the normal displacement 𝑢𝜂 is postulated to be equal to the difference
between the normal displacement 𝑢𝜂 and its plastic part 𝑢𝑝𝑙𝜂 ,

𝑢𝑒𝑙𝜂 = 𝑢𝜂 − 𝑢𝑝𝑙𝜂 , (6)

where the normal plastic displacement 𝑢𝑝𝑙𝜂 is assumed to be the differ-
ence between two plastic multipliers, the accumulation plastic tension
𝜆𝑡𝜂 and the accumulation plastic compression 𝜆𝑐𝜂 ,

𝑢𝑝𝑙𝜂 = 𝜆𝑡𝜂 − 𝜆𝑐𝜂 . (7)

According to the definitions in Placidi et al. (2021), Timofeev et al.
(2021), normal and squared tangential displacements are defined as
follows,

𝑢𝜂 = 𝐿𝐺𝑖𝑗𝑐𝑖𝑐𝑗 (8)

𝑢2𝜏 = 4𝐿2𝐺𝑖𝑗𝐺𝑎𝑏
(

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 − 𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏
)

(9)

where, as it was stated at the beginning of this Section, the unit vector
̂ is the direction of the considered pair interaction and it belongs to
the domain 1, that is the unit circle over which the integral in (5) is
computed; the Green–Saint-Venant tensor 𝐺 is a tensor of 2nd order,

𝐺 = 1
2
(

𝐹 𝑇𝐹 − 𝐼
)

, (10)

where 𝐹 is the deformation gradient,

𝐹 = ∇𝝌 , (11)

that is defined in terms of the placement function 𝜒 (𝑿, 𝑡), that is a
function of the position 𝑿 and of the time 𝑡. The damage variables 𝐷𝜂
and 𝐷𝜏 have the role to reduce the non-damage normal stiffness 𝑘𝜂 and
the non-damage tangent stiffness 𝑘𝜏 , respectively,

𝑘𝜂,𝐷 = 𝑘𝜂
(

1 −𝐷𝜂
)

, 𝑘𝜏,𝐷 = 𝑘𝜏
(

1 −𝐷𝜏
)

. (12)

Besides, non-damage normal stiffness 𝑘𝜂 in tension 𝑘𝑡𝜂 and in compres-
sion 𝑘𝑐 is different in granular materials in general and this is true also
5

𝜂

for UHP FRC. The presence of two different stiffness (i.e. the normal
and the tangential stiffness) implies the need for two different damage
variables since the normal and tangential damage may be expected to
evolve differently. We consider a certain orientation 𝑐 to be in tension
or in compression on the basis of the sign of the elastic part 𝑢𝑒𝑙𝜂 of the
normal displacement 𝑢𝜂 . Thus,

𝑘𝜂 = 𝑘𝑡𝜂 𝛩
(

𝑢𝑒𝑙𝜂
)

+ 𝑘𝑐𝜂 𝛩
(

−𝑢𝑒𝑙𝜂
)

, (13)

where 𝛩 (𝑥) is the Heaviside function, that is equal to unity value if
𝑥 ≥ 0 and to zero if 𝑥 < 0. Insertion of (6), (8), (9) and (12) into (5)
yields the elastic energy per unit area in a more compact form,

𝑈 = 1
2
C𝑖𝑗𝑎𝑏𝐺𝑖𝑗𝐺𝑎𝑏 + P𝑖𝑗𝐺𝑖𝑗 , (14)

where, accounting for the symmetrization induced by the symmetry of
the strain tensor 𝐺, the elastic stiffnesses C, and the pre-stress P are
identified as follows

C𝑖𝑗𝑎𝑏 = 𝐿2
∫1

𝑘𝜂
(

1 −𝐷𝜂
)

𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏𝑑𝐴 (15)

+𝐿2
∫1

𝑘𝜏
(

1 −𝐷𝜏
) ((

𝛿𝑖𝑎𝑐𝑗𝑐𝑏 + 𝛿𝑖𝑏𝑐𝑗𝑐𝑎 + 𝛿𝑗𝑎𝑐𝑖𝑐𝑏 + 𝛿𝑗𝑏𝑐𝑖𝑐𝑎
)

− 4𝑐𝑖𝑐𝑗𝑐𝑎𝑐𝑏
)

𝑑𝐴

P𝑖𝑗 = −𝐿∫1
𝑘𝜂

(

1 −𝐷𝜂
)

𝑢𝑝𝑙𝜂 𝑐𝑖𝑐𝑗𝑑𝐴 (16)

According to the legacy of the continuum mechanics (Auffray et al.,
2015a), a consequence of the expression (14) for the elastic energy per
unit area is the form of the stress tensor 𝑆, i.e.,

𝑆𝑖𝑗 =
𝜕𝑈
𝜕𝐺𝑖𝑗

= P𝑖𝑗 + C𝑖𝑗𝑎𝑏𝐺𝑎𝑏 (17)

where the pre-stress P is therefore interpreted as the stress 𝑆 with
no strain, i.e. with 𝐺 = 0. We oversee that (i) the normal plastic
displacement 𝑢𝑝𝑙𝜂 has a direct influence, as expected, from (16) on the
pre-stress and (ii) damage variables 𝐷𝜂 and 𝐷𝜏 have a direct influence
from (15) on the stiffness tensor.

3.2. The dissipation energy density

Damage and plastic variables are dissipative in nature and their
evolution is related to the form of the dissipation energy. Similarly to
what was done for the elastic energy density in (5) we assume a form
for the dissipation for a given pair orientation 𝑐 and then we integrate
such a dissipation over the unit circle 1,

𝑊 = ∫1

{1
2
𝐵2 [𝑘𝜂𝑔

(

𝐷𝜂 , 𝐷𝑚𝑡𝑟
)

+ 𝑘𝜏𝑔
(

𝐷𝜏 , 𝐷𝑚𝑡𝑟
)]

+
(

1 −𝐷𝜂
)

(

𝜎𝑡𝜂𝜆
𝑡
𝜂 + 𝜎𝑐𝜂𝜆

𝑐
𝜂

)}

𝑑𝐴, ∀𝑿 ∈ 
(18)

where 𝐵 is the initial characteristic damage displacement, 𝜎𝑡𝜂 and 𝜎𝑐𝜂
are the initial plastic yielding points in tension and in compression,
respectively, and the function 𝑔 is defined as follows,

𝑔
(

𝑑, 𝑑𝑚𝑡𝑟
)

= 2 − 2 log
(

1 − 𝑑𝑚𝑡𝑟
)

+
(

log
(

1 − 𝑑𝑚𝑡𝑟
))2

+ (𝑑 − 1)
(

2 − 2 log
[(

1 − 𝑑𝑚𝑡𝑟
)

(1 − 𝑑)
]

+
(

log
[(

1 − 𝑑𝑚𝑡𝑟
)

(1 − 𝑑)
])2

)

.

It is worth to note that its derivative with respect to the first variable
𝑑 takes a simplified form,
𝜕𝑔
𝜕𝑑

=
[

log
(

1 − 𝑑𝑚𝑡𝑟
)

(1 − 𝑑)
]2 (19)

and that with 𝑑 = 0, we have

𝑔
(

0, 𝑑𝑚𝑡𝑟
)

= 0. (20)

The variable 𝐷𝑚𝑡𝑟 has different values, i.e. 𝐷𝑚𝑡𝑟
𝑐 and 𝐷𝑚𝑡𝑟

𝑡 , in compres-
sion and in tension, respectively,

𝐷 = 𝐷𝑚𝑡𝑟𝛩
(

−𝑢 + 𝜆𝑡 − 𝜆𝑐
)

+𝐷𝑚𝑡𝑟𝛩
(

𝑢 − 𝜆𝑡 + 𝜆𝑐
)

, (21)
𝑚𝑡𝑟 𝑐 𝜂 𝜂 𝜂 𝑡 𝜂 𝜂 𝜂
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where a direction 𝑐 is assumed to be in compression or in tension
looking for the sign, negative or positive, respectively, of the elastic
part 𝑢𝑒𝑙𝜂 of the normal displacement according to (6).

It is worth to give an interpretation of the form (18) of the dissi-
pation energy. The second addend involves normal damage and plastic
descriptors. It is linear with respect to plastic descriptors and the co-
efficients of such a linearity will be interpreted as a yielding threshold
once the corresponding KKT will be derived. It is possible to prove that
the dependence of such coefficients with normal damage makes the
activation of plastic evolution to be independent with respect to dam-
age. Thus, the dissipation increases indefinitely with plastic descriptors
but the damage factor attenuate such a tendency. The first addend is
more complicated. It involves only damage. First of all the restriction
(20) makes the dissipation to be null with damage equal to zero and
the positiveness of (19) makes the dissipation monotonic with damage.
Besides, the higher the value of the parameter 𝑑𝑚𝑡𝑟 the higher the value
f the derivative (19) and therefore the higher is the difficulty for the
aterial to increase the level of damage. Besides, we will achieve a

lear interpretation of the variables 𝐷𝑚𝑡𝑟
𝑐 and 𝐷𝑚𝑡𝑟

𝑡 introduced in (21)
fter the exploitation of the Hemivariational principle in the following
ection 3.3. It is worth to note finally that the first addend of (18)
as been split into two parts, one for normal and one for tangent
omponents.

.3. The hemivariational principle for the continuum model

The (action) energy functional is defined as the sum of the elastic
nd dissipation energies,
(

𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

= ∫

[

𝑈 +𝑊 − 𝑏𝑒𝑥𝑡𝑖 𝜒𝑖
]

𝑑𝑉 − ∫𝜕𝑁

[

𝑡𝑒𝑥𝑡𝑖 𝜒𝑖
]

𝑑𝑉 , (22)

ntegrated over the 2𝐷 reference configuration . 𝑏𝑒𝑥𝑡 is the external
istributed body force acting on the surface  and 𝑡𝑒𝑥𝑡 is the external
istributed force acting on those part 𝜕𝑁 of the boundary 𝜕 for which
e do not prescribe the placement 𝜒 (i.e., we do not prescribe Dirichlet
oundary conditions) and therefore on which we prescribe Neumann
oundary conditions. The energy functional  is a functional of the
undamental kinematical descriptors of the model, i.e. the placement

(𝑿, 𝑡) , (23)

hat is a function of the position 𝑿 and of the time 𝑡, and the 4
rreversible descriptors

𝜂 (𝑿, 𝑐, 𝑡) , 𝐷𝜏 (𝑿, 𝑐, 𝑡) , 𝜆𝑡𝜂 (𝑿, 𝑐, 𝑡) , 𝜆𝑐𝜂 (𝑿, 𝑐, 𝑡) , (24)

hat are all functions not only of the position 𝑿 and of the time 𝑡 but
lso of the orientation 𝑐. Damage (𝐷𝜂 and 𝐷𝜏 ) and plastic (𝜆𝑡𝜂 and 𝜆𝑐𝜂)
ariables are defined as non-decreasing in time. Thus, these inequality
ssumptions,

𝜕𝐷𝜂

𝜕𝑡
≥ 0,

𝜕𝐷𝜏
𝜕𝑡

≥ 0,
𝜕𝜆𝑡𝜂
𝜕𝑡

≥ 0,
𝜕𝜆𝑐𝜂
𝜕𝑡

≥ 0, ∀𝑿 ∈ , ∀𝑐 ∈ 1, (25)

mply a generalization of standard variational principle into a so-called
emivariational principle. To do this, let us introduce a monotonously
ncreasing time sequence 𝑇𝑖 ∈

{

𝑇𝑖
}

𝑖=0,…,𝑀 with 𝑇𝑖 ∈ R and 𝑀 ∈ N
nd give initial datum on each of the fundamental kinematic quantities
or 𝑖 = 0, i.e., for time 𝑡 = 𝑇0. A family of placements 𝜒 defines the
otion for each time 𝑡 = 𝑇0, 𝑇1,… , 𝑇𝑀 . The set 𝐴𝑀𝑡 of kinematically

dmissible placements is defined for a given time 𝑡 and the set 𝐴𝑉𝑡 is
efined as the corresponding space of kinematically admissible varia-
ions, i.e., 𝜐 = 𝛿𝜒 ∈ 𝐴𝑉𝑡. Admissible variations 𝛽 of the irreversible
inematic quantities

(

𝐷𝜂 , 𝐷𝜏 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂

)

must be positive because of (25),
amely

=
{

𝛿𝐷 , 𝛿𝐷 , 𝛿𝜆𝑡 , 𝛿𝜆𝑐
}

∈ R+ × R+ × R+ × R+. (26)
6

𝜂 𝜏 𝜂 𝜂
y definition, the first variation 𝛿 of the energy functional (22) is
alculated as

 = 
(

𝜒 + 𝛿𝜒,𝐷𝜂 + 𝛿𝐷𝜂 , 𝐷𝜏 + 𝛿𝐷𝜏 , 𝜆
𝑡
𝜂 + 𝛿𝜆𝑡𝜂 , 𝜆

𝑐
𝜂 + 𝛿𝜆𝑐𝜂

)

− 
(

𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

.

(27)

esides, the increment of (23)–(24), i.e. of the fundamental kinematic
uantities, at 𝑡 = 𝑇𝑖 is given by the difference between these quantities
s evaluated at times 𝑡 = 𝑇𝑖 and 𝑡 = 𝑇𝑖−1, namely

𝛥𝜒, 𝛥𝐷𝜂 , 𝛥𝐷𝜏 , 𝛥𝜆
𝑡
𝜂 , 𝛥𝜆

𝑐
𝜂

)

𝑇𝑖
=
(

𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

𝑇𝑖
−
(

𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

𝑇𝑖−1
.

The same definition is utilized for the increment 𝛥 of the energy
functional

𝛥 = 
(

𝜒 + 𝛥𝜒,𝐷𝜂 + 𝛥𝐷𝜂 , 𝐷𝜏 + 𝛥𝐷𝜏 , 𝜆
𝑡
𝜂 + 𝛥𝜆𝑡𝜂 , 𝜆

𝑐
𝜂 + 𝛥𝜆𝑐𝜂

)

− 
(

𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

.

(28)

inally, as a matter of fact, the hemi-variational principle is formulated
s follows

 ≥ 𝛿 ∀𝜐 = 𝛿𝜒 ∈ 𝐴𝑉𝑡, ∀𝛽 =
(

𝛿𝐷𝜂 , 𝛿𝐷𝜏 , 𝛿𝜆
𝑡
𝜂 , 𝛿𝜆

𝑐
𝜂

)

∈ R+×R+×R+×R+.

(29)

As remarked in Marigo (1989), the inequality (29) states that the
ctual energy release rate, proportional to 𝛥 , is not lower than any
ossible one. Thus, it constitutes a kind of principle of maximum energy
elease rate.

.4. The Euler Lagrange equations for the continuum model

The derivation of the Euler Lagrange equations is done according
o the derivation deduced in Placidi et al. (2022, 2021), Timofeev
t al. (2021). First of all, the reversibility of the admissible placement
ariation 𝜐 = 𝛿𝜒 ∈ 𝐴𝑉𝑡 implies the following variational equality,
(

𝜒 + 𝛿𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

− 
(

𝜒,𝐷𝜂 , 𝐷𝜏 , 𝜆
𝑡
𝜂 , 𝜆

𝑐
𝜂

)

= 𝜕
𝜕𝜒

𝛿𝜒 = 0,

∀𝜐 = 𝛿𝜒 ∈ 𝐴𝑉𝑡,
(30)

that corresponds to those Partial Differential Equations (PDEs) and
Boundary Conditions (BCs) valid for standard geometrically nonlinear
elastic materials for fixed values of irreversible kinematic quantities
(

𝐷𝜂 , 𝐷𝜏 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂

)

,

𝑆𝑖𝑗,𝑗 + 𝑏𝑖 = 0, ∀𝑿 ∈ , 𝑆𝑖𝑗𝑛𝑗 = 𝑡𝑖, ∀𝑿 ∈ 𝜕𝑁. (31)

Secondly, following the methods developed in the same papers in Placidi
et al. (2022, 2021), Timofeev et al. (2021), Misra et al. (2021), the
variational inequality (29) implies the following KKT conditions corre-
sponding to the 4 irreversible kinematic descriptors

(

𝐷𝜂 , 𝐷𝜏 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂

)

,
{

𝐷𝜂 − 𝐷̃𝜂(𝑢𝜂 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂)
}

𝛥𝐷𝜂 = 0, (32)

𝐷𝜏 − 𝐷̃𝜏 (𝑢𝜏 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂)
}

𝛥𝐷𝜏 = 0, (33)

𝜆𝑡𝜂 − 𝜆̃𝑡𝜂(𝑢𝜂 , 𝜆
𝑐
𝜂 , 𝐷𝜂)

}

𝛥𝜆𝑡𝜂 = 0, (34)

𝜆𝑐𝜂 − 𝜆̃𝑐𝜂(𝑢𝜂 , 𝜆
𝑡
𝜂 , 𝐷𝜂)

}

𝛥𝜆𝑐𝜂 = 0, (35)

here the thresholds are evaluated by derivation of the energy func-
ional (22) and reported here,

̃ 𝜂(𝑢𝜂 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂) = 1 − 1

1 −𝐷𝑚𝑡𝑟
exp

⎛

⎜

⎜

⎜

⎜

⎝

−

√

2
𝜎𝑡𝜂𝜆𝑡𝜂+𝜎𝑐𝜂𝜆𝑐𝜂

𝑘𝜂
+
(

𝑢𝜂 − 𝜆𝑡𝜂 + 𝜆𝑐𝜂
)2

𝐵

⎞

⎟

⎟

⎟

⎟

⎠

,(36)

𝐷̃𝜏 (𝑢𝜏 , 𝜆𝑡𝜂 , 𝜆
𝑐
𝜂) = 1 − 1

1 −𝐷𝑚𝑡𝑟
exp

⎛

⎜

⎜

⎜

−

√

(

𝑢𝜏
)2

𝐵

⎞

⎟

⎟

⎟

, (37)
⎝ ⎠
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‖

𝜆̃𝑡(𝑢𝜂 , 𝜆𝑐𝜂 , 𝐷𝜂) = 𝑢𝜂 + 𝜆𝑐𝜂 −
𝜎𝑡𝜂
𝑘𝜂

, (38)

𝜆̃𝑐 (𝑢𝜂 , 𝜆𝑡𝜂 , 𝐷𝜂) = −𝑢𝜂 + 𝜆𝑡𝜂 −
𝜎𝑐𝜂
𝑘𝜂

. (39)

t is worth to note that the placement 𝜒 from (23) is a function only
pon the position and time. Thus, the PDEs and BCs (31) have to be
olved over the domain ∀𝑿 ∈  and for every time 𝑡 = 𝑇0, 𝑇1,… , 𝑇𝑀 .

Besides, the irreversible kinematic descriptors in (24) are functions
not only upon position 𝑿 and time 𝑡 but also upon the orientation 𝑐.
Thus, they have to be solved not only for every position of the domain,
i.e. ∀𝑿 ∈ , and for every time, i.e. for every time 𝑡 = 𝑇0, 𝑇1,… , 𝑇𝑀 ,
but also for every orientation, i.e. ∀𝑐 ∈ 1. Besides, the KKT conditions
32)–(33)–(34)–(35) are algebraic equations and therefore no Finite
lement Method is necessary for their evaluation.

. Characterization of the 2D granular micro-mechanics frame-
ork for the UHP FRC

.1. Interpretation of the constitutive parameters of the granular micro-
echanic model

The model that we have recapped in the previous Section 3 depends
pon only 9 parameters, i.e.
𝑐
𝜂 , 𝑘

𝑡
𝜂 , 𝑘𝜏 , 𝐿, 𝐵,𝐷

𝑚𝑡𝑟
𝑐 , 𝐷𝑚𝑡𝑟

𝑡 , 𝜎𝑡𝜂 , 𝜎
𝑐
𝜂 (40)

he first three (𝑘𝑐𝜂 , 𝑘𝑡𝜂 and 𝑘𝜏 ) are related to the elastic response from (5)
ith the inclusion of (6)–(13) and the fourth (𝐿) to the characteristic

ize of the microstructure of the material. In Barchiesi et al. (2021) we
ave already proved that, in the case of tension–compression symmetry
𝑘𝜂 = 𝑘𝑐𝜂 = 𝑘𝑡𝜂) and for an isotropic elastic geometrically nonlinear
aterial, the three parameters 𝑘𝜂 , 𝑘𝜏 and 𝐿 are related to the 2D
oung’s modulus 𝑌2𝐷 and Poisson’s ratio 𝜈2𝐷,

𝜂 =
𝑌2𝐷

𝜋𝐿2
(

1 − 𝜈2𝐷
) , 𝑘𝜏 = 𝑌2𝐷

1 − 3𝜈2𝐷
4𝜋𝐿2

(

1 − 𝜈22𝐷
) . (41)

n this paper the deformation is, for the sake of simplicity, homoge-
eous and therefore strain gradient effects are not relevant. Moreover,
he material is not at all an elastic one. However, the material is initially
lastic and isotropic but with a different elastic behavior in tension and
ompression. In order to use the experimental results in (2)–(4), we
ssume a uniaxial homogeneous tension (or compression) deformation
est along the orientation 𝑒1, so that the Green Saint-Venant strain
ensor 𝐺 has the following null components,

12 = 𝐺22 = 0. (42)

o that from (17), with the insertion of (15) and of (42), we have that
he uniaxial stress 𝑆11 is

11 = C1111𝐺11 =
𝜋𝐿2

4
(

3𝑘𝜂 + 4𝑘𝜏
)

𝐺11. (43)

If we assume the validity of (41) in compression (𝑌2𝐷 = 𝑌 𝑐
2𝐷)

𝑘𝑐𝜂 =
𝑌 𝑐
2𝐷

𝜋𝐿2
(

1 − 𝜈2𝐷
) , 𝑘𝜏 = 𝑌2𝐷

1 − 3𝜈2𝐷
4𝜋𝐿2

(

1 − 𝜈22𝐷
) , (44)

he general form of the stress (43) with the inclusion of (i) the com-
ression condition 𝑘𝜂 = 𝑘𝑐𝜂 , (ii) the identification (44) and (iii) the
xperimental law (1) with (2) yield,

11 =
𝜋𝐿2

4

(

3𝑘𝑐𝜂 + 4𝑘𝜏
)

𝐺11 =
𝑌 𝑐
2𝐷

(

1 − 𝜈22𝐷
)𝐺11 = 𝑆3𝐷

11 𝐴 = 𝐸𝑐𝐺11𝐴𝑐 (45)

so that the identification of 𝑘𝑐𝜂 and 𝑘𝜏 is derived from (44) and (45),

𝑘𝑐 = 𝐸
1 + 𝜈2𝐷 𝐴 , 𝑘 = 𝐸

1 − 3𝜈2𝐷 𝐴 . (46)
7

𝜂 𝑐 𝜋𝐿2 𝑐 𝜏 𝑐 4𝜋𝐿2 𝑐 ‖

‖

It is worth to note that 𝑆11 is the component of the stress for the
present 2D case and 𝑆3𝐷

11 is the analogous component in a 3D case. If the
thickness is assumed to be equal to 𝐴 then their relation is 𝑆11 = 𝑆3𝐷

11 𝐴.
Besides, in the compression test of Fig. 1, where we identify 𝐸𝑐 in (2),
he thickness is 𝐴 = 𝐴𝑐 = 10 cm. In tension the general form of the
tress (43) with the inclusion of (i) the tension condition 𝑘𝜂 = 𝑘𝑡𝜂 and

the experimental law (3) with (4) yield,

𝑆11 =
𝜋𝐿2

4

(

3𝑘𝑡𝜂 + 4𝑘𝜏
)

𝐺11 = 𝑆3𝐷
11 𝐴 = 𝐸𝑡𝐺11𝐴𝑡 (47)

so that the identification of 𝑘𝑡𝜂 is derived from (46) and (47)2,

𝑘𝑡𝜂 =
4
3
𝐸𝑡𝐴𝑡

𝜋𝐿2
− 4

3
𝑘𝜏 . (48)

It is worth to note that in the tension test of Fig. 3, where we identify
𝐸𝑡 in (4), the thickness is extrapolated from Fig. 2, i.e. 𝐴 = 𝐴𝑡 = 80 mm.

From (37)𝐵 is interpreted as the characteristic tangent damage
relative displacement. From (36) the interpretation of 𝐵 as the char-
acteristic normal damage relative displacement cannot be done as it
was done in Maksimov et al. (2021), Placidi et al. (2022), Timofeev
et al. (2021), Placidi et al. (2021) because of the presence of plastic
multipliers in the KKT conditions that comes from a novel form of
the dissipation energy functional in (18). However, for the sake of
simplicity, we call 𝐵 the characteristic damage displacement. From
(36) and (37) it is evident that the higher the 𝐵, the lower is, for
a given deformation process, the velocity of the damage evolution
and for a given value of 𝐵 one needs the same value for the relative
isplacements (e.g. tangential displacement 𝑢𝜏 ≃ 𝐵) to achieve a

non negligible value (i.e.
(

1 −𝐷𝑚𝑡𝑟 − e−1
)

∕
(

1 −𝐷𝑚𝑡𝑟
)

) for tangential
damage.

Let us calculate the 4 thresholds 𝐷̃𝜂 , 𝐷̃𝜏 , 𝜆̃𝑡 and 𝜆̃𝑐 from (36)–(37)–
38)–(39) at the beginning of the deformation process, i.e for which the
elative displacements 𝑢𝜂 and 𝑢𝜏 and the damage 𝐷𝜂 and 𝐷𝜏 and plastic
𝜆𝑡𝜂 and 𝜆𝑐𝜂 variables are all null,

𝐷̃𝜂(0, 0, 0) = 𝐷̃𝜏 (0, 0, 0) = 1 − 1
1 −𝐷𝑚𝑡𝑟

= −
𝐷𝑚𝑡𝑟

1 −𝐷𝑚𝑡𝑟
,

̃𝑡(0, 0, 0) = −
𝜎𝑡𝜂
𝑘𝜂

, 𝜆̃𝑐 (0, 0, 0) = −
𝜎𝑐𝜂
𝑘𝜂

, ∀𝑿 ∈ , ∀𝑐 ∈ 1.

hey are all negative once one adopts the following restrictions

𝜂 > 0, 𝜎𝑡𝜂 > 0, 𝜎𝑐𝜂 > 0, 0 < 𝐷𝑚𝑡𝑟 < 1.

his is an important choice because, being all null the initial values of
he 4 non-decreasing descriptors

𝜂 = 𝐷𝜏 = 𝜆𝑡𝜂 = 𝜆𝑐𝜂 = 0, 𝑎𝑡 𝑡 = 0 (49)

he KKT conditions (32)–(33)–(34)–(35) are not solved with the curled
arentheses, i.e. with

𝜂 = 𝐷̃𝜂 , 𝐷𝜏 = 𝐷̃𝜏 , 𝜆𝑡𝜂 = 𝜆̃𝑡, 𝜆𝑐𝜂 = 𝜆̃𝑐 (50)

ut with prescribing no increments, i.e. with

𝐷𝜂 = 𝛥𝐷𝜏 = 𝛥𝜆𝑡𝜂 = 𝛥𝜆𝑐𝜂 = 0, ∀𝑿 ∈ , ∀𝑐 ∈ 1

esides, in order to solve the KKT conditions (32)–(33)–(34)–(35) with
he curled parentheses and therefore to achieve a condition for damage
nd plastic evolution one needs to achieve an amount of relative
isplacements to make null the 4 thresholds 𝐷̃𝜂 , 𝐷̃𝜏 , 𝜆̃𝑡 and 𝜆̃𝑐 . In the
ollowing we will consider null, as in the initial condition (49), damage
nd plastic descriptors and make specific such amounts of relative
isplacements. From (36) the norm ‖

‖

‖

𝑢𝜂
‖

‖

‖

of the normal displacement
eeds to be equal to the positive number 𝑢̄𝜂𝐷,

𝑢 ‖ = 𝑢̄ = −𝐵 log
(

1 −𝐷
)

. (51)
𝜂‖
‖

𝜂𝐷 𝑚𝑡𝑟
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From (37) the norm
√

(

𝑢𝜏
)2 of the tangent displacement needs to be

equal to the positive number 𝑢̄𝜏𝐷
√

(

𝑢𝜏
)2 = 𝑢̄𝜏𝐷 = −𝐵 log

(

1 −𝐷𝑚𝑡𝑟
)

. (52)

From (38) the normal displacement 𝑢𝜂 needs to be positive and equal
to the positive number 𝑢̄𝜂𝜆𝑡,

𝑢𝜂 = 𝑢̄𝜂𝜆𝑡 =
𝜎𝑡𝜂
𝑘𝜂

. (53)

rom (39) the normal displacement 𝑢𝜂 needs to be negative and equal
o the negative number 𝑢̄𝜂𝜆𝑐 ,

𝜂 = 𝑢̄𝜂𝜆𝑐 = −
𝜎𝑐𝜂
𝑘𝜂

. (54)

Thus, the quantities 𝐷𝑚𝑡𝑟 (𝐷𝑚𝑡𝑟
𝑡 if the orientation is in tension and 𝐷𝑚𝑡𝑟

𝑐
if the orientation is in compression according to (21)), 𝜎𝑡𝜂 and 𝜎𝑐𝜂 are re-
ated to those relative displacement values that are necessary to activate
amage and plastic evolution according to (51)–(52)–(53)–(54).

.2. Identification of the constitutive parameters of the granular micro-
echanic model

Let us first assume a characteristic size 𝐿 of the microstructure to
be

𝐿 = 10 mm. (55)

A better characterization of this size will be achieved in another pub-
lication dedicated to the non-homogeneous case, where the size of the
strain localization will be of the same order of magnitude of the charac-
teristic size 𝐿 because of a different and strain gradient representation
of the relative displacement (8)–(9).

By analyzing the first elastic stages in Figs. 1 and 3 we have
achieved the values of elastic stiffness in tension and in compression
in (2)–(4). By assuming a standard value

𝜈2𝐷 ≅ 0.2, (56)

for the 2D Poisson ratio, from (46)–(48) and the insertion in it of
(2)–(4)–(55)–(56), we have the following numerical identifications,

𝑘𝑐𝜂 = 1.74×1013 N∕m3, 𝑘𝑡𝜂 = 5.37×1012 N∕m3, 𝑘𝜏 = 1.45×1012 N∕m3. (57)

Let us consider the uniaxial test defined in (42). Insertion of (42)
nto (8) yields the corresponding normal displacement as a function of
he orientation 𝑐,

𝜂 = 𝐿𝐺11𝑐
2
1 , (58)

here 𝑐1 is the first component of the unit vector 𝑐. Thus, the orien-
ation that suffers the maximum normal displacement 𝑢max

𝜂 is in this
ase 𝑐 = 𝑒1, i.e. the maximum normal displacement 𝑢max

𝜂 is achieved by
nsertion of 𝑐1 = 1 into (58),

max
𝜂 = 𝐿𝐺11. (59)

et 𝐺𝑡
11 > 0 be the value of the strain component 𝐺11 for which we

ctivate damage and plastic evolution in tension and let 𝐺𝑐
11 > 0 be its

pposite value in compression. In other words, we assume that damage
nd plastic evolution are activated for the same values in tension (at
11 = 𝐺𝑡

11) and in compression (at 𝐺11 = −𝐺𝑐
11). Thus, we have from

21)–(51)–(52)–(53)–(54)–(59) the following relations,

𝐺𝑡
11 = −𝐵 log

(

1 −𝐷𝑚𝑡𝑟
𝑡

)

=
𝜎𝑡𝜂
𝑡 , 𝐿𝐺𝑐

11 = −𝐵 log
(

1 −𝐷𝑚𝑡𝑟
𝑐

)

= −
𝜎𝑐𝜂
𝑐 ,
8

𝑘𝜂 𝑘𝜂
which yield the identifications of the remaining constitutive coefficients
as a functions of 𝐺𝑡

11 and 𝐺𝑐
11,

𝜎𝑡𝜂 = 𝑘𝑡𝜂𝐿𝐺
𝑡
11, 𝐷𝑚𝑡𝑟

𝑡 = 1 − exp

(

−
𝐿𝐺𝑡

11
𝐵

)

,

𝜎𝑐𝜂 = −𝑘𝑐𝜂𝐿𝐺
𝑐
11, 𝐷𝑚𝑡𝑟

𝑐 = 1 − exp
(

−
𝐿𝐺𝑐

11
𝐵

)

.

(60)

By analyzing the ends of the elastic stages in Figs. 1 and 3 we guess the
following values the strain-thresholds,

𝐺𝑡
11 = 0.0003, 𝐺𝑐

11 = −0.0032. (61)

It is worth to note that it is also possible to use the CDP (Concrete Dam-
age Plasticity) model (Simulia, 2014; Qingfu et al., 2020) to achieve
similar values for the identifications (61). A parametric analysis can
also be done for the characteristic damage displacement 𝐵. With the
following hypothesis,

𝐵 = 1.5 × 10−5 m, (62)

we report the identifications of the remaining constitutive coefficients
from (60)–(61)–(62)

𝜎𝑡𝜂 = 1.61× 107 N∕m2, 𝜎𝑐𝜂 = 5.56× 108 N∕m2, 𝐷𝑚𝑡𝑟
𝑡 = 0.181, 𝐷𝑚𝑡𝑟

𝑐 = 0.882.

(63)

We note here that damage-mechanism that drive the mechanical re-
sponse of UHP FRC are not investigated in a way that it is possible
to distinguish normal and tangential ones. For this reason, we use a
unique characteristic damage displacement 𝐵 in (62).

5. Numerical simulations of the 2D problem

5.1. Definition of the problem for the tension/compression case

Let us solve the problem for a squared shape body  with those
boundary conditions defined in Fig. 4.

If the imposed displacement 𝛿 (𝑡) is positive, then we are in the
tension case. Besides, after an initially increasing function of time let us
have a subsequent unloading stage as it is shown on the top-left-hand
side of Fig. 5. In formulae we have

𝛿 (𝑡) = 𝛿1 sin
2𝜋𝑡
𝑇

, 𝑡 ∈
[

0, 𝑡𝑓
]

, (64)

where 𝛿1 is the maximum imposed displacement, 𝑇 is the oscillation
period and 𝑡𝑓 the final time of the simulation. In tension and compres-
sion the final time is 𝑡𝑓 = 3𝑇 ∕10, that is greater than 𝑇 ∕4 to show the

entioned unloading stage. Besides, in shear the final time is 𝑡𝑓 = 𝑇 ∕2
n order to show the complete unloading stage.

According to the geometry of Fig. 4, we assume that the body  is
square of size 𝐴

= 100 mm. (65)

he displacement field

= 𝑿 + 𝜒(𝑿, 𝑡) (66)

f the continuum body  is induced by the particular boundary condi-
ions prescribed in Fig. 4 for all the points 𝑿 of the domain  without
ny need of Finite Element simulations,

1 =
𝛿 (𝑡)
𝐴

𝑋1, 𝑢2 = 0, ∀𝑿 ∈ . (67)

Thus, the components of the Green–Saint-Venant strain tensor are
derived by insertion of (67), (11) and (66) into (10),

𝐺11 =
𝛿 (𝑡)
𝐴

+ 1
2

(

𝛿 (𝑡)
𝐴

)2
, 𝐺12 = 𝐺22 = 0, (68)

the first of which is represented on the top-right-hand side of Fig. 5.
In this case, the qualitative evolution of displacement and strain is the



International Journal of Solids and Structures 297 (2024) 112844L. Placidi et al.

𝑐

Fig. 5. Imposed displacement on the left-hand side and the components 𝐺11 (𝑡) or 𝐺12 (𝑡) of the imposed strain on the right-hand side, linked via the nonlinear relation (68). In
the first row, we plot the tension case. In the second row, we plot the compression case. In the third row, we plot the shear case.
same because the nonlinear addend in (68)1 is negligible. It is worth to
note that elimination of those supports along the horizontal boundaries
in Fig. 4 would imply non-homogeneous deformation and therefore
the necessity of a Finite Element simulation for the calculation of the
displacement field, that will be therefore different of (67).

It is worth mentioning that the displacement and strain fields in
compression have the same representation of eqns. (67)–(68) but with
opposite sign of the imposed displacement 𝛿 (𝑡). They are represented
in the second row of Fig. 5.

The normal and the squared tangent displacement from (8) and (9)
yield,

𝑢𝜂 = 𝐿𝐺11 cos2 𝜃 = 𝐿

[

𝛿 (𝑡)
𝐴

+ 1
2

(

𝛿 (𝑡)
𝐴

)2
]

cos2 𝜃, (69)

𝑢2𝜏 = 4𝐿2𝐺11𝐺11
(

cos2 𝜃 − cos4 𝜃
)

=

(

𝐿

[

𝛿 (𝑡)
𝐴

+ 1
2

(

𝛿 (𝑡)
𝐴

)2
]

sin 2𝜃

)2

,

(70)

where a standard parameterization of the unit vector 𝑐 has been used
in terms of an angle 𝜃, i.e.,

̂1 = cos 𝜃, 𝑐2 = sin 𝜃. (71)

The stress response is given in terms of the components 𝑆11, 𝑆12 and
𝑆22 of the stress tensor in (17), with the use of (68)2,3,

𝑆11 = P11 + C1111𝐺11, 𝑆12 = P12 + C1211𝐺11, 𝑆22 = P22 + C2211𝐺11,

that, by insertion of (15) and (16), implies the following form of the
stress tensor components,

𝑆11 = −𝐿
2𝜋 [

𝑘𝜂
(

1 −𝐷𝜂
)

(

𝜆𝑡 − 𝜆𝑐
)

cos2 𝜃
]

𝑑𝜃 + (72)
9

∫0 𝜂 𝜂
+𝐺11𝐿
2
∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

cos4 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

sin2 2𝜃
]

𝑑𝜃,

𝑆22 = −𝐿∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

(

𝜆𝑡𝜂 − 𝜆𝑐𝜂
)

sin2 𝜃
]

𝑑𝜃 + (73)

+𝐺11𝐿
2
∫

2𝜋

0
sin2 𝜃 cos2 𝜃

[

𝑘𝜂
(

1 −𝐷𝜂
)

− 4𝑘𝜏
(

1 −𝐷𝜏
)]

𝑑𝜃,

𝑆12 = −𝐿∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

(

𝜆𝑡𝜂 − 𝜆𝑐𝜂
)

sin 𝜃 cos 𝜃
]

𝑑𝜃 + (74)

+𝐺11𝐿
2
∫

2𝜋

0
sin 𝜃 cos 𝜃

[

𝑘𝜂
(

1 −𝐷𝜂
)

cos2 𝜃 − 𝑘𝜏
(

1 −𝐷𝜏
)

[2 cos 2𝜃]
]

𝑑𝜃

Let us analyze the horizontal stress 𝑆11. In the elastic phase (where all
the damage and plastic descriptors are null) it is a linear function of
the imposed strain 𝐺11. The coefficient of such a linear dependence,
i.e. the component C1111 of the stiffness tensor, can be interpreted as
an equivalent stiffness,

𝑘𝑒𝑞 (𝑡) = C1111 = 𝐿2
∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

cos4 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

sin2 2𝜃
]

𝑑𝜃

(75)

that evolves in time according to the evolution of damage descriptors
𝐷𝜂 and 𝐷𝜏 . The equivalent stiffness in (75) provides a natural definition
of an equivalent damage variable 𝑑𝑒𝑞 (𝑡), viz.,

𝑘𝑒𝑞 (𝑡) = 𝑘0𝑒𝑞
[

1 − 𝑑𝑒𝑞 (𝑡)
]

. (76)

where 𝑘0𝑒𝑞 is the initial value 𝑘𝑒𝑞 (0) of the equivalent stiffness 𝑘𝑒𝑞 (𝑡),

𝑘𝑒𝑞 (0) = 𝑘0𝑒𝑞 = 𝐿2
∫

2𝜋

0

[

𝑘𝜂 cos4 𝜃 + 𝑘𝜏 sin
2 2𝜃

]

𝑑𝜃 = 3𝜋
4
𝐿2𝑘𝜂 + 𝜋𝐿2𝑘𝜏 .

(77)
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It is worth to note that in those tension and compression cases that are
here defined, the orientations are all in tension or all in compression.
This is the reason why 𝑘𝜂 in (77) is 𝑘𝑡𝜂 in tension and 𝑘𝑐𝜂 in compression.
Finally, the equivalent damage variable 𝑑𝑒𝑞 (𝑡) can be easily computed
from (75)–(76)–(77),

𝑑𝑒𝑞 (𝑡) = 1 −
𝑘𝑒𝑞 (𝑡)
𝑘0𝑒𝑞

. (78)

It is worth to note that the equivalent damage evolution in (78) does
not give a complete description of the material behavior that can be
deduced in this model. On the one hand, the load prescribed in Fig. 5
induces also (i) an evolution of the load free configuration from P11 that
can be calculated by the first addend of (72) and (ii) a lateral reaction,
because of Poisson effect, that can be deduced by the component
𝑆22 in (73). On the other hand, the initial isotropic sample becomes
anisotropic because damage and plastic variables evolves according to
normal (69) and tangential (70) displacements that depend both upon
the orientation 𝜃. This implies, e.g., that the ratio

𝑟 (𝑡) =
C1111
C2222

(79)

between horizontal and vertical stiffness, initially equal to the unity
value because of the assumed isotropy of the initial condition, becomes
lower than 1. The reason is that the horizontal deformation is higher
than the vertical one and therefore the corresponding stiffness is au-
tomatically reduced as a consequence of the deformation. The formal
definitions of the equivalent damage (78), with the use of (75) and (77),
and of the anisotropic index (79), with the use of (15), are the same in
tension and in compression and will be computed in Sections 5.4.1 and
5.4.2.

Besides, the fourth order stiffness tensor C can be reduced to a
second order one, namely C, with the use of the Voigt notation for the
representation of (17) in the following form,

⎛

⎜

⎜

⎝

𝑆11
𝑆22
𝑆12

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑆11
𝑆22
𝑆12

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

C1111 C1122 2C1112
C1122 C2222 2C1222
2C1112 2C1222 2C1212

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝐺11
𝐺22
𝐺12

⎞

⎟

⎟

⎠

,

where the second order stiffness tensor C is

C =
⎛

⎜

⎜

⎝

C1111 C1122 2C1112
C1122 C2222 2C1222
2C1112 2C1222 2C1212

⎞

⎟

⎟

⎠

. (80)

The three eigenvalues of the second order stiffness tensor C have an
important interpretation. In fact, two of these eigenvalues are the same
in the isotropic case and another measure for anisotropy is their split.

It is worth to finally note that the tension/compression asymmetry
in the initial elastic stage induce a non-symmetric Poisson effect. To
prove this fact, let us calculate the horizontal 𝑆11 and the vertical 𝑆22
stress components by insertion of the null damage condition (49) and
the identifications (46)–(48) into (72)–(73) in compression,

𝑆11 = 𝐺11𝐿
2 𝜋
4

(

3𝑘𝑐𝜂 + 4𝑘𝜏
)

= 𝑆3𝐷
11 𝐴𝑐 = 𝐺11𝐸𝑐𝐴𝑐 , (81)

𝑆22 = 𝐺11𝐿
2 𝜋
4

(

𝑘𝑐𝜂 − 4𝑘𝜏
)

= 𝑆3𝐷
22 𝐴𝑐 = 𝐺11𝐸𝑐𝜈2𝐷𝐴𝑐 , (82)

and in tension

𝑆11 = 𝐺11𝐿
2 𝜋
4

(

3𝑘𝑡𝜂 + 4𝑘𝜏
)

= 𝑆3𝐷
11 𝐴𝑡 = 𝐺11𝐸𝑡𝐴𝑡, (83)

𝑆22 = 𝐺11𝐿
2 𝜋
4

(

𝑘𝑡𝜂 − 4𝑘𝜏
)

= 𝑆3𝐷
22 𝐴𝑡 = 𝐺11

[

𝜈2𝐷𝐸𝑐 +
1
3
(

𝐸𝑡 − 𝐸𝑐
)

]

𝐴𝑡. (84)

Thus, it is evident that the Poisson ratio 𝜈𝑐2𝐷 in compression is from
(81)–(82),

𝜈𝑐2𝐷 =
𝑆22
𝑆11

= 𝜈2𝐷,

which is different from that 𝜈𝑡2𝐷 in tension, that can be computed by
(83)–(84),

𝜈𝑡 =
𝑆22 = 𝜈2𝐷

𝐸𝑐 + 1
(

1 −
𝐸𝑐

)

. (85)
10

2𝐷 𝑆11 𝐸𝑡 3 𝐸𝑡
Fig. 6. Shear (Dirichlet-type) boundary conditions for a squared shape body  induce
homogeneous deformation reported in (87).

As a matter of facts the tension/compression symmetric condition 𝐸𝑐 =
𝐸𝑡 implies from (85) an equivalent value 𝜈𝑐2𝐷 = 𝜈𝑡2𝐷 of the Poisson ratio
both in tension and in compression. However, in our case, 𝐸𝑐∕𝐸𝑡 ⋍ 2
and therefore from (56) and (85), we have 𝜈𝑡2𝐷 ⋍ 0.07.

5.2. Definition of the problem for the shear case

Let us solve the problem for the squared shape body  with the same
size (65) but with different boundary conditions defined in Fig. 6.

The displacement field 𝑢 of the continuum body  is induced by the
particular boundary conditions prescribed in Fig. 6 for all the points 𝑿
of the domain  without any need of Finite Element simulations,

𝑢1 =
𝛿 (𝑡)
𝐴

𝑋2, 𝑢2 = 0, ∀𝑿 ∈ , (86)

where we assume the same function 𝛿 (𝑡) of eqn. (64). The components
of the Green–Saint-Venant strain tensor are derived by insertion of (86),
(11) and (66) into (10),

𝐺11 = 0, 𝐺12 =
𝛿 (𝑡)
2𝐴

, 𝐺22 =
1
2

(

𝛿 (𝑡)
𝐴

)2
, (87)

the second of which is represented on the bottom-right-hand side of
Fig. 5. The third component is due to the geometrical nonlinearity of
the formulation and is negligible for the present small deformation case.

The normal and the squared tangent displacement from (8)–(9) and
(87) yield,

𝑢𝜂 = 2𝐿
𝛿 (𝑡)
2𝐴

(

sin 2𝜃 +
𝛿 (𝑡)
2𝐴

cos2 𝜃
)

, (88)

𝑢2𝜏 =
[

𝐿
(

𝛿 (𝑡)
2𝐴

)(

cos 2𝜃 +
𝛿 (𝑡)
2𝐴

sin 2𝜃
)]2

, (89)

where the parameterization (71) has been used for the orientation 𝑐. It
is worth to note that for small displacement and positive 𝛿, we calculate
from the sign of sin 2𝜃 in (88) the tension/compression discrimination
in the present shear case,

𝜃 ∈
(

0, 𝜋
2

)

∪
(

𝜋, 3𝜋
2

)

, ⇒ 𝑘𝜂 = 𝑘𝑡𝜂 , (90)

𝜃 ∈
(𝜋
2
, 𝜋

)

∪
( 3𝜋

2
, 2𝜋

)

, ⇒ 𝑘𝜂 = 𝑘𝑐𝜂 . (91)

The stress response is given in terms of the components 𝑆11, 𝑆22 and
𝑆12 of the stress tensor in (17), with the use of (87)1,

𝑆11 = P11 + 2C1112𝐺12 + C1122𝐺22,

𝑆22 = P22 + 2C2212𝐺12 + C2222𝐺22,

𝑆 = P + 2C 𝐺 + C 𝐺 ,
12 12 1212 12 1222 22
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+

+

𝑆

w

d
m
t
f
(
a
b
c
b

𝑟

b
𝛿
e
c

that, by insertion of (15) and (16), implies the following form of the
stress tensor components,

𝑆11 = −𝐿∫

2𝜋

0
𝑘𝜂

(

1 −𝐷𝜂
)

(

𝜆𝑡𝜂 − 𝜆𝑐𝜂
)

cos2 𝜃𝑑𝜃 + (92)

2𝐺12𝐿
2
∫

2𝜋

0
cos 𝜃 sin 𝜃

[

𝑘𝜂
(

1 −𝐷𝜂
)

cos2 𝜃 − 𝑘𝜏
(

1 −𝐷𝜏
)

2 cos 2𝜃
]

𝑑𝜃 +

𝐺22𝐿
2
∫

2𝜋

0
sin2 𝜃 cos2 𝜃

[

𝑘𝜂
(

1 −𝐷𝜂
)

− 4𝑘𝜏
(

1 −𝐷𝜏
)]

𝑑𝜃,

22 = −𝐿∫

2𝜋

0
𝑘𝜂

(

1 −𝐷𝜂
)

(

𝜆𝑡𝜂 − 𝜆𝑐𝜂
)

sin2 𝜃𝑑𝜃 + (93)

+2𝐺12𝐿
2
∫

2𝜋

0
sin 𝜃 cos 𝜃

[

𝑘𝜂
(

1 −𝐷𝜂
)

sin2 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

2 cos 2𝜃
]

𝑑𝜃 +

+𝐺22𝐿
2
∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

sin4 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

sin2 2𝜃
]

𝑑𝜃,

𝑆12 = −𝐿∫

2𝜋

0
𝑘𝜂

(

1 −𝐷𝜂
)

(

𝜆𝑡𝜂 − 𝜆𝑐𝜂
)

sin 𝜃 cos 𝜃𝑑𝜃 + (94)

+2𝐺12𝐿
2
∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

sin2 𝜃 cos2 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

cos2 2𝜃
]

𝑑𝜃 +

+𝐺22𝐿
2
∫

2𝜋

0
sin 𝜃 cos 𝜃

[

𝑘𝜂
(

1 −𝐷𝜂
)

sin2 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

[2 cos 2𝜃]
]

𝑑𝜃.

In order to propose an equivalent stiffness 𝑘𝑠𝑒𝑞 (𝑡) also for the shear
case we analyze in the elastic phase (where all the damage and plastic
descriptors are null) the shear stress 𝑆12. It is a linear function of the
shear strain 𝐺12. The coefficient of such linear dependence, i.e. twice
the component C1212 of the stiffness tensor, can be interpreted as an
equivalent shear stiffness,

𝑘𝑠𝑒𝑞 (𝑡) = 2C1212 = 2𝐿2
∫

2𝜋

0

[

𝑘𝜂
(

1 −𝐷𝜂
)

sin2 𝜃 cos2 𝜃 + 𝑘𝜏
(

1 −𝐷𝜏
)

cos2 2𝜃
]

𝑑𝜃

(95)

that evolves in time according to the evolution of damage descriptors
𝐷𝜂 and 𝐷𝜏 . The equivalent shear stiffness in (95) provides a natural
definition of an equivalent shear damage variable 𝑑𝑠𝑒𝑞 (𝑡), viz.,

𝑘𝑠𝑒𝑞 (𝑡) = 𝑘𝑠0𝑒𝑞
[

1 − 𝑑𝑠𝑒𝑞 (𝑡)
]

, (96)

where 𝑘0𝑠𝑒𝑞 is the initial value 𝑘𝑠𝑒𝑞 (0) of the equivalent shear stiffness
𝑘𝑠𝑒𝑞 (𝑡). Such an initial stiffness,

𝑘𝑒𝑞 (0) = 𝑘𝑠0𝑒𝑞 = 2𝐿2
∫

2𝜋

0

[

𝑘𝜂 sin
2 𝜃 cos2 𝜃 + 𝑘𝜏 cos2 2𝜃

]

𝑑𝜃, (97)

because of tension/compression asymmetry and the use of (90)–(91) is

𝑘𝑠0𝑒𝑞 =
𝜋
4
𝐿2

(

𝑘𝑐𝜂 + 𝑘𝑡𝜂 + 8𝑘𝜏
)

.

The equivalent shear damage variable 𝑑𝑠𝑒𝑞 (𝑡) can be easily computed
from (96),

𝑑𝑠𝑒𝑞 (𝑡) = 1 −
𝑘𝑠𝑒𝑞 (𝑡)

𝑘𝑠0𝑒𝑞
, (98)

here (95) is used for the graphic of Fig. 15.
Even in this shear case, it is worth to note that the equivalent

amage evolution in (98) does not give a complete description of the
aterial behavior that can be deduced in this model. On the one hand,

he load prescribed in Fig. 5 induces also (i) an evolution of the load
ree configuration from P12 that can be calculated by the first addend of
94) and (ii) normal reactions can be deduced by the components 𝑆11
nd 𝑆22 in (92)–(93). On the other hand, the initial isotropic sample
ecomes anisotropic because damage and plastic variables evolve ac-
ording to normal (88) and tangential (89) displacements that depend
oth upon the orientation 𝜃. This implies, e.g., that the ratio

𝑠 (𝑡) =
C𝑖𝑗ℎ𝑘𝑛1𝑖 𝑛

1
𝑗𝑛

1
ℎ𝑛

1
𝑘

2 2 2 2
(99)
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C𝑖𝑗ℎ𝑘𝑛𝑖 𝑛𝑗𝑛ℎ𝑛𝑘
etween two oblique stiffnesses, one along the oblique direction 𝑛1𝑖 =
𝑖1+𝛿𝑖2 and the other along the oblique direction 𝑛2𝑖 = −𝛿𝑖1+𝛿𝑖2, initially
qual to the unity value because of the assumed isotropy of the initial
ondition, becomes different than 1.

It is worth to note finally a qualitative difference between ten-
sion/compression cases and the shear case. In order to explain this
concept in an easy way we consider the small displacement approxima-
tion. On the one hand, in the tension/compression cases and for a given
value of the strain component 𝐺11, normal and tangential displacement
reach from (69) and (70) the same maximum values

𝑢max
𝜂 = 𝑢max

𝜏 = 𝐿𝐺11.

On the other hand, in the shear case and for a given value of the strain
component 𝐺12, normal and tangential displacement reach from (88)
and (89) different maximum values

𝑢max
𝜂 = 2𝑢max

𝜏 = 2𝐿𝐺12.

In other words in the shear case, as it is expected, the maximum tan-
gential displacement is larger than the maximum normal displacement.
This implies that we have different regimes after the elastic one. The
reason is that not only the thresholds in tension and in compression are
reached at different level of the shear component 𝐺12 because of the
different values prescribed in (63) but also the normal and tangential
damage thresholds, see e.g. (51)–(52), are now reached at different
values of the shear component 𝐺12.

5.3. Numerical method for the homogeneous simulations

Some assumptions have been made in the initial stage of the process.
The first is the initial null conditions not only for the displacement field
𝑢,

𝑢(𝑋, 𝑡 = 𝑇0) = 0, ∀𝑿 ∈ 

but also for damage and plastic descriptors:

𝐷𝜂(𝑐,𝑿, 𝑡 = 𝑇0) = 0, 𝐷𝜏 (𝑐,𝑿, 𝑡 = 𝑇0) = 0, ∀𝑿 ∈ ,∀𝑐 ∈ 1 (100)

𝜆𝑡𝜂(𝑐,𝑿, 𝑡 = 𝑇0) = 0, 𝜆𝑐𝜂(𝑐,𝑿, 𝑡 = 𝑇0) = 0, ∀𝑿 ∈ ,∀𝑐 ∈ 1 (101)

Isotropic initial condition is therefore deduced according to the eqns.
(15)–(16). The algorithm of the simulation is very simple and deserves
to be mentioned.

We firstly consider the imposed displacement 𝛿 at the initial time
step 𝑡 = 𝑇1 and deduce for that time, the displacement field 𝑢 from (67)
or (86). In the general non-homogeneous case such a deduction is not
an easy task and a Finite Element approximation is needed. However,
the purpose of this paper is to show the validity of a certain class
of constitutive relations and to do this we have avoided to consider
boundary conditions inducing non-homogeneous deformation. We have
therefore selected a particular kind of boundary conditions for which
homogeneous deformation is the solution and therefore there is no need
of Finite Element modeling. Thus, the strain field 𝐺 is calculated from
(68) or (87) for every positions ∀𝑿 ∈  and it is also calculated the
normal and tangential displacement from (69)–(70) or (88)–(89) for
every positions ∀𝑿 ∈  and orientations ∀𝑐 ∈ 1. Thus, we calculate
the KKT conditions (32)–(33)–(34)–(35) and calculate for the time step
𝑡 = 𝑇1 damage and plastic descriptors:

𝐷𝜂(𝑐,𝑿, 𝑡 = 𝑇1), 𝐷𝜏 (𝑐,𝑿, 𝑡 = 𝑇1), ∀𝑿 ∈ ,∀𝑐 ∈ 1,

𝜆𝑡𝜂(𝑐,𝑿, 𝑡 = 𝑇1), 𝜆𝑐𝜂(𝑐,𝑿, 𝑡 = 𝑇1), ∀𝑿 ∈ ,∀𝑐 ∈ 1.

Thus, isotropic condition is not satisfied anymore and therefore the
anisotropic stiffness tensors can be calculated analytically from (15)–
(16) to deduce the stress components from (72)–(73)–(74) at time 𝑡 =
𝑇1.

We secondly consider the imposed displacement 𝛿 at the second

time step 𝑡 = 𝑇2 and repeat the procedure for all the time steps.
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Fig. 7. Stress–strain response for the tension case. Numerical and experimental results are shown together.
5.4. Results of the homogeneous simulation

In this Subsection we show the numerical results for the homoge-
neous cases presented in Sections 5.1 and 5.2 and with the numerical
method explicited in Section 5.3.

5.4.1. Tension case
The tension case is characterized with the positive value of the

imposed displacement (64)

𝛿1 = 1.8 mm.

In Fig. 7 we show the stress–strain response for the tension case. We
have qualitative agreement with the experimental results reported in
Fig. 3.

After the first elastic stage, at 𝐺11 = 𝐺𝑡
11 damage and plastic

variables are activated by both the KKT (32)–(33)–(34)–(35) and initial
(100)–(101) conditions. Because of the homogeneity of the strain, their
evolution are independent upon position. However, because of the
uniaxial loading, they are a function of the orientation. We report such
a dependence in Fig. 8. We observe that normal damage and plastic
tension accumulation displacement are higher for those orientations 𝑐
that are close to the uniaxial loading direction 𝑒1, where the normal
displacement is higher, i.e. with 𝜃 close to 𝑘𝜋 with 𝑘 being an integer
number 𝑘 = 0, 1, 2,…. Besides, the tangential damage is higher where
the tangential displacement is higher, i.e. with 𝜃 close to 𝜋

4 + 𝑘 𝜋
2 with

𝑘 being an integer number 𝑘 = 0, 1, 2,…. In this tension case all the
orientations are in tension. Thus plastic accumulation in compression is
null for every orientation and is not reported. The evolution of damage
and plastic descriptors are shown in Fig. 8 at different levels of the
applied strain. The first is, according to (61)1 at the strain threshold
of the elastic phase. The second is at 10 times such a threshold. The
third is an intermediate one. The fourth is at the maximum value of the
applied strain and the last is at the end of the time history. We observe
that between the fourth and the fifth strain level we are in an unloading
phase and therefore the damage and plastic descriptors do not evolve.
Evolution of damage variables induces a non trivial evolution of both
the equivalent damage 𝑑𝑒𝑞 from (78) and of the anisotropic index 𝑟
from (79). Besides, two of the eigenvalues of the second order stiffness
tensor defined in (80) are initially the same and the induced anisotropy
is shown by the splitting of such two eigenvalues. The corresponding
calculated functions are reported in Figs. 9. In particular, in Fig. 9a we
show the equivalent damage 𝑑𝑒𝑞 and the anisotropic index 𝑟 defined
in (98) and (99), respectively, and in Fig. 9b we show the splitting of
the two eigenvalues of the second order stiffness tensor for the tension
case.
12
5.4.2. Compression case
The compression case is characterized with the negative value of

the imposed displacement (64)

𝛿1 = −1.8 mm.

In Fig. 10 we show the stress–strain response for the compression case.
We have qualitative agreement with the experimental results reported
in Fig. 1.

After the first elastic stage, at 𝐺11 = −𝐺𝑐
11 damage and plastic

variables are activated by both the KKT (32)–(33)–(34)–(35) and initial
(100)–(101) conditions. Because of the homogeneity of the strain, their
evolution are independent upon position. However, because of the
uniaxial loading, they are a function of the orientation. We report such
a dependence in Fig. 11. We observe that normal damage and plastic
tension accumulation displacement are higher for those orientations 𝑐
that are close to the uniaxial loading direction 𝑒1, where the normal
displacement is higher, i.e. with 𝜃 close to 𝑘𝜋 with 𝑘 being an integer
number 𝑘 = 0, 1, 2,…. Besides, the tangential damage is higher where
the tangential displacement is higher, i.e. with 𝜃 close to 𝜋

4 +𝑘 𝜋
2 with 𝑘

being an integer number 𝑘 = 0, 1, 2,…. In this compression case all the
orientations are in compression. Thus plastic accumulation in tension is
null for every orientation and is not reported. The evolution of damage
and plastic descriptors are shown in Fig. 11 at different levels of the
applied strain. The first is, according to (61)2 at the strain threshold of
the elastic phase. The second is at 2 times such a threshold. The third is
an intermediate one. The fourth is at the maximum value of the applied
strain and the last is at the end of the time history. We observe that
between the fourth and the fifth strain level we are in an unloading
phase and therefore the damage and plastic descriptors do not evolve.
Evolution of damage variables induces a non trivial evolution of both
the equivalent damage 𝑑𝑒𝑞 from (78) and of the anisotropic index 𝑟
from (79). Besides, two of the eigenvalues of the second order stiffness
tensor defined in (80) are initially the same and the induced anisotropy
is shown by the splitting of such two eigenvalues. The corresponding
calculated functions are reported in Fig. 12. In particular, in Fig. 12a we
show the equivalent damage 𝑑𝑒𝑞 and the anisotropic index 𝑟 defined in
(98) and (99), respectively, and in Fig. 12b we show the splitting of the
two eigenvalues of the second order stiffness tensor for the compression
case.

5.4.3. Shear case
The shear case is characterized with the positive value, from (64),

of the parameter 𝛿1,

𝛿1 = 1.8 mm.

In Fig. 13 we show the stress–strain response for the shear case. Here,
we do not have experimental results for comparison. Thus, we show the
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Fig. 8. Damage and plastic variables evolution in the tension case. All the orientations are in tension and therefore plastic accumulation in compression is null.
Fig. 9. (a) Equivalent damage and anisotropic index, defined in (98) and (99), in the tension case are plotted both as a function of the imposed strain. (b) Three eigenvalues of
the second order stiffness tensor defined in (80).
results for the purpose to show the phenomenology of the presented
constitutive prescriptions.

After the first elastic stage, damage and plastic variables are ac-
tivated by both the KKT (32)–(33)–(34)–(35) and initial (100)–(101)
13
conditions. The activation of damage and plastic descriptors occur
before for those orientations that are in tension, then tangential damage
is activated and then for those orientations that are in compression
according to the comments at the end of Section 5.2. Because of the
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Fig. 10. Stress–strain response for the compression case. Numerical and experimental results are shown together.

Fig. 11. Damage and plastic variables evolution in the compression case. All the orientations are in compression and therefore plastic accumulation in tension is null.
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Fig. 12. (a) Equivalent damage and anisotropic index are plotted as a function of the imposed displacement for the compression case. (b) Three eigenvalues of the second order
stiffness tensor defined in (80).
Fig. 13. Stress–strain response for the shear case.
-

homogeneity of the strain, the stress strain evolution of Fig. 13 is
independent upon position. However, because of the shear loading,
orientations evolve in a different way. We report such a dependence
in Fig. 14. We observe that normal damage and plastic tension ac-
cumulation displacement are higher for those orientations 𝑐 that are
close to the oblique direction 𝑒1 + 𝑒2, where the normal displacement
is positive and higher. Thus, normal damage and plastic compression
accumulation displacement are higher for those orientations 𝑐 that are
close to the oblique direction 𝑒1 − 𝑒2, where the normal displacement
is negative and higher in modulus. Besides, the tangential damage is
higher where the tangential displacement is higher, i.e. with 𝜃 close to
𝑘 𝜋
2 with 𝑘 being an integer number 𝑘 = 0, 1, 2,…. In this shear case

the orientations are some in tension and some in compression. Thus,
both plastic accumulation in compression and in tension are not null
for some orientations and they are therefore both reported. Evolution of
damage variables induces a non trivial evolution of both the equivalent
shear damage 𝑑𝑠𝑒𝑞 from (98) and of the anisotropic index 𝑟𝑠 from (99). It
is worth to note that, because of the tension–compression asymmetry,
the sheared sample is anisotropic from the very beginning. This is
shown by the fact that none of the eigenvalues of the second order
stiffness tensor defined in (80) are initially the same. The corresponding
calculated functions are reported in Figs. 15. In particular, in Fig. 12a
we show the equivalent damage 𝑑𝑠𝑒𝑞 and the anisotropic index 𝑟𝑠 and
in Fig. 12b we show the three eigenvalues of the second order stiffness
tensor for the shear case. It is worth to note that the equivalent damage
is a monotonic variable both in the loading and in the unloading stages.
However, in the abrupt switch between these two stages the tension–
compression asymmetry makes the equivalent damage to decrease
15
because the orientations in tension and that in compression change,
at that point, the role and the equivalent stiffness increases.

6. Conclusion and outlook

The main thrust of the work is the adaptation of the granular
micromechanics approach (GMA) developed in Barchiesi et al. (2021),
Misra and Poorsolhjouy (2015), Misra and Singh (2015), Placidi et al.
(2021), Timofeev et al. (2021), to the modeling of Ultra High Perfor-
mance Fiber Reinforced Concrete (UHP FRC). We have shown that by
properly defining the effective grain-pair damage-elasto-plastic spring
elements in the normal and tangential directions, the response of UHP
FRC under macro-scale homogeneous deformation can be modeled.
The novel aspects of the introduced parameterized effective grain-pair
damage-elasto-plastic spring elements include tension–compression asym
metric normal stiffnesses and characteristic damage relative displace-
ment and the control for relative displacement necessary to acti-
vate damage and plastic evolution. A detailed methodology for deter-
mination of effective grain-pair model parameters from macro-scale
measurements and their physical interpretation are discussed. The
model is then applied to predict UHP FRC response under macro-
scale homogeneous deformation when subjected to uniaxial extension
and compression as well as pure shear deformation. The prediction
shows the model capability for describing gradual post peak softening
that UHP FRC typically exhibits in both homogeneous extension and
compression. More importantly, the model predicts that under such
macro-scale homogeneous deformation, the evolution of damage and
plasticity are directional, indicating an evolution of micro-scale me-

chanical and structural attributes that results in macro-scale anisotropy.
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Fig. 14. Damage and plastic variables evolution in the shear case.
Fig. 15. (a) Equivalent shear damage and anisotropic index are plotted as a function of the imposed shear strain. (b) Three eigenvalues of the second order stiffness tensor defined
in (80).
The directional nature of evolution that GMA based model is able to
elaborate is particularly interesting for the case of pure shear in which
certain grain-pair orientations experience tension while others undergo
compression resulting in a non-monotonic evolution of macroscopic
anisotropy. Finally, it is noteworthy that the derived model can be
used to predict unloading to the stress free state (with non trivial
plastic deformation) or to the strain free state (with the non trivial pre-
stress prescribed in (16)). Future work will consider implementation of
the approach to simulate cases with non-homogeneous deformations,
such as the three-points bending test, in which the loading path at
various material points can be unique and complex including certain
materials suffering unloading while others experience loading. For such
problem, second gradient theories are needed to not only regularize
the numerical computations but to correctly describe the formation
of strain localization zones and eventual fracture as in Placidi et al.
(2021), Timofeev et al. (2021).
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