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Abstract

It is usually accepted in geophysics (and in civil engineering) that linear models can be used for describing an earthquake
and the consequent seismic waves’ propagation. However, the large deformation experienced by the soil in these sit-
uations suggests that this paradigm requires more critical consideration. In fact, we claim that, in the vicinity of some
discontinuities (that are common in all the geophysical applications of continuum models), the corresponding strain con-
centrations make the hypothesis of small deformation to be inadequate. In this paper, we verify the inappropriateness of
the linear paradigm in a simple but reasonable case, with a view to a future application of this study to the effects of the
2009 L'Aquila earthquake. To this aim, we start with an analysis which is restricted to a two-dimensional body (i) with an
inhomogeneity that resembles the Aterno River Valley, central Italy and (ii) with a non-linearity that is the most simple
one, choosing the strain energy to be quadratic in the non-linear measures of deformation. More precisely, we consider
a 2D piecewise homogeneous domain and a material that is viscoelastic isotropic and geometrically non-linear. We apply,
to the bottom of such a domain, a seismic excitation and calculate the differences in the response between the linear
and the geometrically non-linear cases. Using a suitably designed numerical model, we prove that, as conjectured, these
differences not only originate near the pre-defined geometrical discontinuities but also propagate throughout the rest of
the domain. Moreover, we find numerical predictions of the frequency ratios and ground acceleration time dependence
and amplitude that produce, in the case of non-linear models, predictions which are closer to experimental evidence
than those obtained using the corresponding linear model.

Keywords
Earthquake, waves, dynamics of soils, non-linear effects

I. Introduction

The current paradigm, usually accepted in geophysics, assumes that linear models can be used
for describing the wave propagation consequent to tectonic or volcanics energy release, in what is
called an earthquake. This paradigm is persistent, albeit more sophisticated non-linear studies in
two- and three-dimensional domains, are widely present in the literature and deal with a wide class of
mechan-ical phenomena [1-9] also related to the waves propagation [10-12]. For these types of
applications of non-linear continuum mechanics , parameter identification represents a delicate point
in the modelling process [13-17]. In the present paper, we will not try to get such an identification
in the context of earthquakes modelling: instead we will explore the model’s potentialities by means
of a qualitative and semi-quantitative analysis, establishing the conceptual bases for further
investigations.

While the linearised approach to earthquake dynamics and wave propagation, often linked to the forc-
ing and free vibration of the structures [18-23], has produced very interesting and useful results, we
claim that non-linear continuum mechanics gives a logical evidence that, in some specific instances,
this approach cannot be accepted and must be modified. In particular, we state that when the
medium in which the waves are propagating is strongly inhomogeneous, so that the fields of stiffnesses
are suffering
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Figure 1. Macroseismic intensities relating to the city of L'Aquila plotted as time(years) vs intensity.

high gradients, and when the earthquake energy release is sufficiently high, then non-linear behaviour
may become not negligible [24-27], also in the simplest case of purely geometrical non-linearities: to be
more precise we remark here that, in the case examined in the numerical simulations of this paper, the
released energy is estimated to be equivalent to the energy of an earthquake with a moment magnitude of
6, as described by Luca et al. [28]. As a consequence of our results, we urge for the introduction of more
sophisticated non-linear models and numerical techniques, in order to get the required precise predictions
of the earthquakes effects, especially when their energy is large. In this paper, the analysis is restricted
to a two-dimensional case in order to get qualitative and preliminary quantitative information about the
properties of considered mechanical systems and in order to prepare the more realistic three-dimensional
analysis, which is needed to face the modelling problem arising when dealing with seismic propagation
in the Aterno River Valley, where the city of [’Aquila is located. To make clearer the modelling chal-
lenges to be confronted we shortly recall, in what follow, the basic phenomenology whose modelling
we intend to develop here and in our future planned investigations. The city of L’Aquila is located in the
central part of the Apennine chain (central Italy), in a seismic area characterized by normal fault earth-
quakes [28,29]. This area (called “aquilano”) has been struck in the past by numerous earthquakes such
as those of 1315, 1349, 1461, 1703 and the recent one on 6 April 2009 (My6.3, [30] which macroseismic
intensities up to XI on the Mercalli-Cancani-Sieberg scale (MCS), corresponding to an Ms close to 7 and
causing deaths and damage; the Figure 1 shows the macroseismic intensities relating to the city of ’Aquila
[31,32].

Before the 2009 event, the presence of seismic amplification in the city of ’Aquila was already known
(within its historic walls) [33], and since then, numerous work were published on seismic microzona-
tion [34-41], on strong motion data [42-47], on earthquake engineering [48-54], on damage distribution
[53,55-57], on geological works [58—-63], on geotechnical works ([43,64,65], and on numerical modeling
([46,66-72]. We remark that in Luca et al.’s study, [33] one can find a first attempt aimed to explain the
observed seismic wave amplification effect (up to 10) in the 0.4-0.8 Hz frequency range. Of course, the
2009 L’Aquila earthquake has been largely discussed in the literature [30,33,44,69,71-73], and it is well-
established that this geographic area shows different geological layers, as it was exposed already by Luca
et al. [33], some years before of the seismic event that occurred in the city of L’Aquila in 2009. Always
in Luca et al.’s study [33]: (1) some preliminary 1-D and 2-D linear continuum models for the superficial
crust under the city of L’Aquila were introduced, and it was proven that, also by using such linear mod-
els, it can be forecast that the discontinuity of stiffnesses must greatly affect the ground accelerations, the
frequency ratios and the seismic wave propagation velocities; (2)) some interesting experimental inves-
tigations in the urban area of the city were presented: in particular weak-motion data from earthquakes
and ambient noise data were collected and analyzed. This experimental evidence given by weak-motion
data share the same characteristics as the strong-motion records and shows clearly the presence of the
amplification effect in the city. The geophysical model on which Luca et al. [33] is based proves that the
ground-motion amplification in the city of L’Aquila is related to the presence of a sedimentary basin, filled by
lacustrine sediments, with a maximum depth of about 250 m. Such area, situated in central Italy, is formed
by NW-SE-dipping normal faults which produced rift valleys features typical to the intermontane basins
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[74-77]. Several of these faults are still active and they may be responsible for further future earthquakes
[78-81].

In this paper, we investigate the wave propagation in a two-dimensional continuous Cauchy medium
caused by a forcing excitation, modelling the effects of high-energy earthquakes (moment magnitude
higher than 6) originated at hypocenters far from the modelled region, where the seismic wave propaga-
tion is studied. In fact, the source of the seismic excitation in 2009 I’Aquila Earthquake was located 10km
below the modelled region, whose thickness is about 1km: we explicitly remark that cannot use here the
expression “deeper hypocenter”, as the usual geological meaning of the term “deeper” in this context
indicates that the hypocenter is located in the mantel under the crust. We consider, at first, linear models,
that are models in which the deformation energy is assumed to be isotropic and quadratic in the linear
deformation measure (i.e. the so-called infinitesimal strain tensor). Our aim, in this paper, is to prove that
linear models are not fully capable to describe the phenomena occurring when it is necessary to consider
continuous models featuring stiffness fields with high spatial gradients: this being the case when strongly
non-homogeneous seismic wave propagation regions are to be considered [82-84]. In order to consider
the simplest non-linear model, we introduce what is usually called a geometric non-linearity, by assum-
ing that the isotropic deformation energy depends quadratically but on the finite strain tensor instead
of depending on the linearised deformation measure [85]. We prove, with numerical simulations, that,
the predictions of non-linear models dramatically differ from those obtained with linear models. These
results seem to indicate, in particular in the case of the earthquakes propagating in the Aterno River Val-
ley, that more sophisticated analyses are needed, if one wants to predict in a reliable way the effects of
seismic waves on buildings and infrastructures. In fact, in the Aterno Valley, it is well-established that
(see Luca et al. [33] and the references there cited) the ratio between the average stiffnesses observed in
the soft alluvial sand or silt deposits layers and in the hard bedrock or calcareous breccia layer is, at least,
one to four, so that high gradients of the stiffness fields are concentrated at the interface regions between
these different layers or between the bedrock and the soft materials. It has to be remarked that in the lit-
erature also different modelling approaches have been attempted when considering linear or non-linear
waves propagation. In fact, some discrete models based on lattice dynamics methods could be applied:
see, for example Sharma and Eremeyev [86], Placidi et al. [87, 88] where transmission, refraction, and
leakage of wave in the vicinity of surface defect were considered. Moreover, some surface-related phe-
nomena in layered structures have been studied recently by Mikhasev et al. [§9], where other references
could be found. We believe, however, that the numerical implementation of continuum models, also in
the presence of non-linearities, is so well-established and reliable that, at the moment, the approach which
we used must be preferred. Because of the numerical simulations which we have performed, we have
observed that the field of deformation (and kinetic) energy density difference between the linear and
non-linear predictions, normalised with respect to the average deformation (and kinetic) energy in the
non-linear case, starts being concentrated in the hard/soft interfaces at the beginning of the dynamic load
(modelling the earthquake) and then propagates in both the soft and hard region: the amplitude of this
propagating field may reach the values higher than 100% in a large region of the domain. Because of their
applicative importance, the linear and non-linear acceleration field in several points close to the bound-
aries and their differences are calculated and discussed. The accelerations are normalised with respect
to the gravity acceleration g and the difference between these two quantities can reach values around
0.77g. We can conclude that the numerical evidence, which we have obtained, demands the develop-
ment of more refined non-linear models for describing, in particular, the phenomenology observed in
the city of L’Aquila during high-energy earthquakes. Albeit for the numerical simulations we have used
the standard package included in COMSOL, some non-trivial encoding solutions have been used: (1)) the
same finite-elements procedure has been used for solving simultaneously the linear and non-linear prob-
lem, (2)) a purely variational approach has been implemented, using suitable Hamilton conservative and
Rayleigh dissipation functionals in the coding procedure, (3)) in order to avoid the reflection back inside
the region of interest of the passing wave at its boundaries, we have chosen suitable optimal boundary
conditions implementing viscoelastic displacement-force relationships at the lateral boundaries of the
considered wave propagating region, while at its bottom a spherical displacement wave, originated in the
hypocenter is imposed: the fact that the forcing action is originated by a far hypocenter is modelled by
imposing at the basis of the bedrock a displacement calculated with a spherical wave transporting the
required earthquake energy [90,91]. The very preliminary results, which we announce here, require the
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development of a more sophisticated analysis in which: (1) isotropy hypothesis is relaxed; (2) the mate-
rial elastic non-linearities are included in the modelling scheme; (3) the creep, damage, and plasticity
effects are suitably accounted for; (4) the second-gradient deformation energy is postulated, for giving
a better description of the boundary layers formed at the interfaces [92-100], also accounting for the
change of the microstructure [101-104] and of the granular (and porous) nature of the soils [105-110]
due to which strong local and macro-to-micro scale differences can be highlighted; (5)) the complete
three-dimensional problem for the Aterno Valley is considered, in order to fully account for the peculiar
behaviour experimentally observed by Luca et al. [33].

2. Geological setting of L’Aquila basin

In this section, we motivate our modeling assumptions based on the geological structure of the crust
beneath the city of L’Aquila. It is located in a tectonic basin (Aterno river valley) bounded by a northwest-
southeast-active normal fault (https: //diss.ingv.it/new — in — diss — 3 —3 — 0), and it was founded in
1245, so that we have somehow detailed records about the seismic activity in its basic since then. The
current tectonic setting of central Italy is due to the superposition of a previous a compressive phase
(middle Oligocene - lower Pliocene, 28-3.6 Myr) during which the Apennine chain was created and the
subsequent the post-orogenic extensional phase characterized by the origin of intermontane basins scat-
tered in the central Apennine chain (such as L’Aquila basin - henceforth LAB in which is placed L’Aquila
city) in the Messinian—Quaternary (7 Myr till now) [58,75-77]. LAB is placed in a NW-SE trending Plio-
Quaternary intermontane tectonic basin bounded by SW dipping active normal fault accountable for the
current and historical seismicity [31,81]. LAB is filled up by lacustrine, slope and alluvial deposits dated
back from the upper Pliocene to the present (3.6 Myr till now) and laying via an unconformity surface
onto the Messinian (7.2-5.3 Myr) terrigenous units and Meso-Cenozoic (100-70 and 20-12 Myr) car-
bonate units. LAB oldest post-orogenic deposits, made up by slope breccias and alluvial conglomerates,
belong to the Colle Cantaro-Cave Formation (CCF) (upper Piacenzian-Gelasian 3.0-1.8 Myr) [61,77,111].
The Madonna della Strada Synthem (MDS), (in this study the soft layer) which is separated from the
underlying CCF by an unconformity boundary, is made up by clayey—sandy silts and sands of Calabrian
age (1.8-0.8 Myr) and referred to an alluvial meandering system within a wide and swampy flood plain
[77]. Above MDS, separated by an unconformity boundary, the Middle Pleistocene (0.8-0.12 Myr) Fosso
Genzano Synthem (FGS) is placed. It consists of gravels and sands referred to alluvial fans and plains
[63]. The hill, where the L’Aquila historic downtown stands, is mainly made up by late Middle Pleistocene
(0.3-0.12 Myr) calcareous breccias (in this study, the hard layer) which, via an erosive boundary, are
superimposed on the underlying MDS and FGS deposits and the Meso-Cenozoic bedrock [112]. In fact,
the historical part of the city (within the ancient walls) is placed on a fluvial terrace in the left bank of the
Aterno River. The elevation of the terrace reaches 900 m a.s.l. (above mean sea level) in the NE part of the
city and slopes down to 675 m in the SW direction. The terrace ends at the Aterno River which flows 50 m
below yet. The terrace is made up of alluvial deposits created in the lower Quaternary age and is composed
of breccias with limestone boulders and clasts in a marly matrix. The dimensions of these clasts can range
from centimeters to some meters. This deposit is common in the Abruzzo region and may be related to
catastrophic alluvial events associated with landslides [113]. These terrace were studied by Demageout
[114], who named them “megabrecce”. The “megabrecce” (called “mega breaches” in English) represents
a well-defined geological unit with a thickness of some tens of meters. These deposits (megabrecce) are
placed on the lacustrine sediments composed mainly of silty and sandy layers and minor gravel beds that
can generate earthquakes with maximum expected magnitudes up to 6.5-7 [81]. The lacustrine sediments
have their maximum thickness (around 300 m) in the center of the city of L’Aquila. In contrast, in the
Aterno River valley, at north of L’Aquila, the thickness of the sediments is never greater than 100 m.

Further information about geological setting of I’Aquila basin will be exploited in future modelling
efforts: in particular when 3D models will be used for getting the required predictions.

3. Modelling and coding assumption

In this section, we define univocally both the linear and non-linear models on the basis of which the anal-
yses will be performed. The soil is modelled as a 2-dimensional domain and each of its material particles
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will be characterised with the coordinate X = X;e; (where ||¢;[| =1 and i=1,2) in a given reference con-
figuration. The set of the kinematical descriptors, which depend upon the coordinates X and the time ¢, is
composed of (1) the horizontal displacement u; (X1, X5, ) and (2) the vertical displacement u, (X;, X, 1).
Let u(X, ) = u;€; be the displacement vector of the generic point with X; coordinates, (X, ) be the place-
ment function, F be the deformation gradient tensor and G be the finite strain tensor. We will indicate
with x = x;€; the coordinates in the current configuration, of the material point having coordinates X in
the reference configuration. In formulae,

1
x= (X,)=X+u, F=V, G:E(IFTIB‘—]I) (1)
or, in index notation:
0D; 1
<I>,-:X,-—i—u,~, Fij:—l:uiJ+5ij, Gijzf(Fk'Fk'_dij) 2)
0x; 2Rk
where
Ou; 1 i=j
ulJ:aiX] and 51]:{0 175] (3)

3.1. Deformation and kinetic energies and Rayleigh functional

Let W¢ and K be the elastic internal deformation and the Kinetic energies, respectively, and let 8fl’>’ be a
subdomain of the boundary 05 of the body B (see the Figure 2)

wel — / IN@r@)? + uir(G?)| da + / L ku - uds )
512 o 2

IC:/ 1pa.ndA (5)
52

where A and p are the 2D Lame coefficients and p is the mass density (per unit area) of the 2D domain,
listed in Table 1, and K is the elastic stiffness per unit line of the bed of springs applied at the vertical
boundaries afB, also listed in Table 1 (and shown in Figure 2). The dot between two vectors a and b,
denoted by a - b, is their scalar product. Let the dissipation energy be:

WA = / RpdA+ | Ryds (6)
B o3

and the two integrands have the following expression,
1 2 2
1
Re= Edl ‘u ®)

here, ), is a coefficient of viscosity and p,, is the shear viscosity of the 2D domain, listed in Table 1 and ¢
is the damping coefficient per unit line of the bed of dashpots applied at the vertical boundaries d¢B, also
listed in Table 1. The Rayleigh dissipative term R g, introduced in equation (7), acts within the domain,
while the boundary dissipative term Ry, defined in equation (8), mitigates non-physical wave reflections
at the domain boundaries, as illustrated in Figure 2. Given that the domain represents a portion of soil, it
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Figure 2. Boundary conditions: three boundary conditions were taken into account. On the two red lateral boundaries, indicating
as g3, are imposed a damping condition, derived from equation (19), and an elastic one, derived from equation (20). On the blue
bottom boundary one has a boundary condition in terms of the displacements, see equations (32) and (33).

is reasonable to assume that seismic waves would naturally propagate beyond the model boundaries, dis-
sipating into the surrounding soil mass. The linear approximation of the non-linear deformation defined
at the third equation of (1) is given by

1
G=5(Vu+ Vo' +Vu'Ve) — E=; (Vu +Vu’). 9)
So that in index notation we have |
Ejj= 5 (uij+uj;) (10)

From the virtual work principle [115], indicating with #; and #, two different instants of time where the
displacements u(X, #;) and u(X, #,) are known, the action is defined as a functional of the displacement
function u(X, 7) as follows:

)
Aty u) = [ = Kat (1)
|
its first variation is:
SA=A(uy + 0uy, uy + dup) — A(uy, up) (12)

By separately examining the two terms of equation (11), the variation (12) can be decomposed into
the sum of the following quantities:

1) o) awel
/ SWel = / 6G dr = / / NGii0Gjj +2uGyi6 Gyj|dAdt + / / Ku;udsdr  (13)
n 3] 8fB

15) 5]
/ SKdt = / / pit - SudAdt (14)
5] n B

Upon integration of equation (13) by parts, certain spatial boundary terms arise naturally. It is impor-
tant to note that, following integration by parts, only on the boundary denoted by J/3 (see Figure 2)
natural boundary conditions need to be added. This is because on the bottom blue boundary (see Fig-
ure 2), displacements (i.e. essential boundary conditions) are imposed, and therefore their variation is
zero. Instead, integrating (14) by parts in time, we obtain

n ) o )
/ 5]Cdt:/ /[pﬁ-éu] dAdt—/ /pii-éudAdt
n 1 B ot 1 B
)
= / [pt - Gu];? dA — / / pii - SudAdt
B 11 B

and

(15)
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If the displacement at the times #; and #, are known and their variation du, for those instants of time,
are equal to 0, then from equation (15) we have,

%) %)
/ SKdr=— / / [pii - u] dAdt (16)
n 1 B

The variation of the dissipative term WS in the equation (6) is defined as SW9is_ The symbol of
the variation operator we used for this quantity is different with respect total one present in equation
(12) because such term is not a classic variation. The variation of the dissipative term is defined by the

following expression:
- 5] OR
Syyis — / / ORE 56,1 + / J Su;ds| dr (17)
n |/B 9Gj o8 Oty

Also for equation (17) the integration by parts provides naturally the boundaries terms on 943, where
no kinematical restrictions are imposed. Finally, the variational principle is formulated as follows:

SA+owdis — (18)

for any admissible variation of the kinematic descriptors. On the red lateral boundaries (Figure 2) two
different conditions are imposed: (1) a boundary damping constrain (as it is prescribed in the equation (8))
modeled as a bed of dashpots to avoid non-realistic reflections of the wave at the boundaries of the model.
Some dissipation phenomena [116] may essentially change the wave propagation, see e.g. Eremeyev [117].
Insertion of equation (8) into equation (17) yields from equation (18) a standard dissipative force at the

vertical boundary,
/ cu - ouds. (19)
oB

and (2) a distributed force, modeled by means a bed of springs with stiffness equal to K and prescribed in
the last boundary term of equation (4), to simulate the reaction of the lateral ground. Insertion of the last
term of equation (4) into equation (11) yields from equation (18) a standard elastic force at the vertical
boundary,

/ Ku - fuds (20)
oB

3.2. The stiffness fields in the soft and hard region and kinematic boundary conditions

Based on the evidence made available, e.g., by Luca et al. [33], the region where seismic waves propagate
is supposed to be constituted by two different materials, characterised by two different stiffnesses (the
Young’s moduli of the softest and the stiffest layers exhibit a 1/4 ratio as shown in the Table 1) and the 2D
Lame parameters were determined (the justification of the whole modelling procedure is similar to what
done in Barchiesi et al. [118], to which we refer) using the following relationships for the plane stress

case:
Yv Y

A+v)(1-20) " 2(1+0)

where Y represents the 2D Young’s modulus and v is the 2D Poisson coefficient. In the Table 1, we use
the index s and 4 to denote that the parameter is linked either to the softer or to harder layers. The softer
layer is located between the two harder layers as it is shown in Figure 2.

Clearly the distance r (Xj, 0) of the generic point of the bottom boundary (blue part of the boundary
in Figure 2), with coordinates (X, 0) (with X; € [0, 7] km), from the hypocenter is:

2D

r= \/(Xl —Xg1)? + (X2 — Xm)? = \/(Xl —Xm)? + X3, (22)
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Table I. Material parameters that are used on the simulations. The indices s and h are linked with the layer in which the parameter
is defined, respectively softer and harder one in Figure 2. Boundary parameters are also defined.

Soft domain Hard domains Boundary
Yo = 10GPa Y, = 40GPa c=108Ns
m
vs=0.1 v, =0.25 K= 4.5%
Avs =5.2- 10’Nms? Ap =2 10°Nms?
Livs = 1.44 - 108Nms?2 Ly =4 - 10°Nms?
k;
ps = 15005§ ph=2700-%
Xz/\
0 //\ S
(X1,0) X;
10 km T
Y
H
2 km

Figure 3. 2-D model: the body is modeled as a domain that consists of three main parts, in which two of these are harder then the
other one. The seismic excitation starts at the hypocenter having coordinates H = (X, Xyy3) = (—2km, — 10km).

In the Figure 2, one can see how on the blu boundary at the bottom, the displacement u is imposed
for modelling the seismic action. The excitation originates from the hypocenter (point H in Figure 3),
spreads into the ground until it reaches the “inhomogeneous superficial region” where wave propaga-
tion is analysed. The seismic excitation is assumed to last 3 seconds. Roughly speaking the imposed
displacement is the result of the compositions of several waves (three longitudinal and three shear ones).
To be more precise, the seismic excitation is modelled by means of the following simplifying assump-
tions: (1) it propagates as a spheric wave that diffuses, under the studied region of propagation, from
an hypocenter H (see Figure 3), with coordinates (Xg;,Xgp) = (—2km, —10km), that resides beneath
the domain of our investigation; (2)) it interacts with the inhomogeneous superficial region through the
blu boundary by “imposing” its displacement; (3)) it does not affect the lateral boundary of the inho-
mogeneous superficial region, where only linear elastic conservative and dissipative interactions occur
between the neighbouring parts of crust. This last modelling choice, of course, limits the quantitative
predictability of the introduced model, but we believe that it does not affect the qualitative features of the
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calculated solutions and makes reasonable the computing burden: it will be improved in future investiga-
tions, where more powerful computing tools will be used. Starting from the meaning of the symbol used
in Figure 3 the unit vector t indicates the direction of the vector r and its orthogonal unit vector t (they
are needed to determine, respectively, the longitudinal and the shear waves oscillation direction) can be
written as:

r =cos ¢ + sin Ve, (23)
t=— sinve; + cos ¥é, (24)

The vector displacement (see e.g. Mancusi et al. [21] for a similar analysis), assuming that the discrete
spectrum includes three different frequencies, is the real part of:

Ag . Aig.. .
i= 2]3:1 7]lf,el(u}jll‘—kﬂr) + %tel(u}jsl—kjsr) (25)
where
Wj =Wjj = Wjg forj=1,2,3 (26)

where (1) wjj and wjg are the frequencies of the longitudinal (index /) and shear (index s) waves which are
equal to each other in the analysed example (26), (2) A;; and Aj represented the source of the longitudinal
and the shear waves respectively, (3) k;; and k;; are the wavenumber of the longitudinal and the shear
waves respectively and the ratios between those terms and the frequency wj is related to the velocities of
the waves (principal and shear waves), as follows

i

kjl :v—Jl forj=1,2,3 (for the longitudinal waves) (28)
w
wi

kis :v—f forj=1,2,3  (for the shear waves) (29)
ws

It is possible to prove that the velocities are also related to the Lame constants as follows,

A+2u
p

sz:\/ﬁ (31)
p

Manipulating equations (23) and (24) by means the equation (22), the displacements imposed at the
bottom boundary, by the equation (25), are:

V= (30)

_ X1 —X . X .

uj (X]) =dayu (1)22:1 [lrzHlAh Sin (wht — khlr) — %Ah S (wht — khsr)] (32)
B —X . X1 —X .

up (Xl) =dayu (1)22:1 [’zmAh S (wht — khl”) — %Ah Sin (wht — khsr):| (33)

where we have pre-multiplied the equation (32) and the equation (33) with a,,; that is a window function
that allow to consider only the signals into a specific time interval. Note that the amplitude of the imposed
waves near the lower blue boundary (which is farther from the hypocenter where the waves originate
and propagate through the ground) is on the order of millimeters.
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Table 2. Waves paramters we used on the simulations. The indices | and s refer to the longitudinal and shear waves, respectively.

Wave | Wave 2 Wave 3

wy = 1571724 wy = 3.142724 wy = 15.708724

Vi = 421647 Vi = 421647 Vi = 421647

Vws = 2434.3T Vws = 2434.3T Vws = 2434.3T

kjj=3726-10"%L ky=7451-107%L ky=3726-1073L

kjs=6.453- 10~ %L kos=7.451- 10741 k3s=6.453- 10731

A| = 320m? Ay = 240m? A3 = 160m?
INNNNNNNNINNNNINNN \

Figure 4. Triangular finite elements.

In Figure 4 the mesh employed is shown. It consists of triangular elements with dimensions not exceed-
ing 469 m in the lower layer (bedrock). Element dimensions. Element dimensions decrease in proximity
to the boundary layers, reaching (for the soft layer) maximum dimensions of 40 m.

The three-dimensional Young’s moduli Y;, Y, presented in Table 1, are multiplied by an assumed out
of plane depth of d = 1m to derive the analogous quantities for the bi-dimensional domain, Y%D = Yyd and

Y%D = Y;d. Then, the Lame coefficients employed in equation (4) for both the softer and harder layers are
determined by equation (21), under the following assumptions:

Y=Y, v=y, for the softer layer (34)
y=y?P , V=1 for the harder layers 35)
Also the mass densities py and pj, are multiplied for the same assumed out of plane depth d= 1m to

yield the density for the two-dimensional domain under investigation to insert into the equation (5) under
the following assumption:

) :p%D for the softer layer (36)

p= p%D for the harder layers (37)

The waves’ parameters are shown in Table 2

3.3. Description of the COMSOL code

The analysis described in this work was conducted using COMSOL, a multiphysics finite element soft-
ware; using this software we were able to carry out a more refined analysis with respect that one by
Luca et al. [33]. The model has 30456 degrees of freedom and 3690 triangular elements, into which it has
been divided. The size of the elements varies depending on the area of the model: it is reduced near the
boundary sharing two subregion with different stiffnesses. The used shape functions are Lagrangian of
quadratic order. The implicit methods are more complicated than the explicit ones, in which it is possible
to find the solution at the next step by means the only that at the current step, because it is necessary to



12 Mathematics and Mechanics of Solids 00(0)

solve an equation for each time step that depend for both the states of the system (the current one and the
next one). So, mathematically, if s(7) is the state of the system at the current time ¢ and s(z+ At) is the
state of the system at the later instant ¢ + A¢t, one has:

s(t+ At)=F (s(1)) for the explicit methods

38
H(s(t),s(t+ A1) =0 for the implicit methods (58)

The solver we used for calculate the results is based on the implicit method called generalized-«
method. Those methods are similar to the second-order BDF (backward differentiation formulas) solver,
also based on an implicit method. Unlike this latter method, the generalized-« is a method that allows to
control better the degree of damping of high frequencies in the solution and it is more accurate. So that if
a solution with sharp gradients is expected, one does not get a very smooth solution due to the damping
in the backward method. It is worth to note that, for those same reasons it is also less stable. We used an
dynamic load characterised by a discrete spectrum and a time step ¢ = (800Hz)_1.

4. Analysis of results

In this section, the comparison between the deformation and the kinetic energy fields and the horizon-
tal and vertical components of the acceleration vector, for the linear and non-linear cases, is shown to
emphasize how the non-linear contribution should be taken into consideration when a seismic analysis is
carried out. As it is shown in the following subsections the differences, in suitable relative terms, are very
large. In the following the superscript n/ indicates that the corresponding quantity is calculated with the
non-linear finite strain tensor G, the third quantity in equation (1) and with the general non-linear evo-
lution equations. Moreover, the superscript / indicates that the corresponding quantity is calculated with
the linearised version of the strain tensor: i.e. equation (10) and with the linearised evolution equations.
Hence, the deformation energies for non-linear and linear cases are denoted as follows,

wn for the non-linear case (39)
w! for the linear case (40)
In the same way, the kinetic energies for non-linear and linear cases are denoted as follows,
K for the non-linear case 41)
K! for the linear case 42)

Hence, the relative non-linear/linear energies are calculated in the following way:

~ ol il
B ,Cnl _ ]Cl
K :7/@ (44)

where the symbols W!and K! represent the average, on the domain, of the linear deformation and kinetic
energy respectively. The accelerations (and their difference between the non-linear and linear case) are
normalized by the gravity acceleration g. Taking into account that the displacements are denoted as u; for
the linear case and as v; for the non-linear case, the horizontal and vertical accelerations for each point
for the linear and for the non-linear cases are denoted, respectively, as follows,

i; _U for the linear case (45)
8

V; Y for the non-linear case (46)
8
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and the comparison has been obtained by the difference:

a;="v; — ii; (47)

Clearly the index i takes on values equal to 1 (horizontal acceleration) or 2 (vertical acceleration).

4.1. Comparison of the deformation energy fields in linear and non-linear cases and formation of energy
difference boundary layers

The deformation energy represents an important measure of the deformations during the seismic action
that it is worth to be investigated. In the Figure 5, it is shown the highest (or lowest) amount of the
percentage difference W, in the equation (43), reached on the domain for each time instant.

Note that some extreme values are due clearly to numerical errors that are concentrated only in iso-
lated elements. In Figure 5, the lines corresponding to y ==+£1 are highlighted to show how large are the
relative errors between the two methods (clearly the value 1 means differences equal to 100%). Future
numerical simulations, with more powerful computing tools, will eliminate these spurious values by
using finer finite elements and regularization techniques, such as higher gradient models, which are bet-
ter suited for discontinuous stiffness fields. To mitigate the impact of the aforementioned numerical errors
[119], the color legend in the following contour plots is restricted to the range [-1, 1]. However, for some
plots (e.g., Figure 6(b)), a different range might seem more appropriate. These choices were made to
improve the readability of the plots when the actual range of values is too small to be effectively repre-
sented within the wider range [-1, 1]. The contour plots of the deformation energy in the non-linear case

W and its comparison W with respect the linear one are shown for some time instants in Figure 6-9.
In the Figure 5(a) (and clearer in Figure 5(b)) notice that, already during the first seconds when the seis-
mic action excites the ground, the relative difference W is not negligible (having value much higher
then 100%).

Note that from the very beginning, the (albeit small) differences are concentrated at the material tran-
sition, from the bedrock to the softer intermediate layer. In addiction, the deformation energy (at the
Figure 6(a) and (b) appears almost uniform, and it is the result of the composition of several spherical
waves with different velocities and wave lengths. Despite that some differences are present close to the
boundary layer as it is shown in Figure 6(c).

It has to be observed that from the beginning of the simulation, the relative difference is substantial
(Figure 7(c)) with an extensive region where the difference VV exceeds 20% warrants attention.

0 ' mazx (W) ' l I l m(u:‘(W)

1 !\
AW ARRRVAVATER /\

Y
]
—
| 1
4
]

<

<
Loa
Q‘—\
==

r 4

Figure 5. Maximum value of W, defined in equation (43), for (a) the whole analyses and (b) a zooming of the first 3 seconds.
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Figure 6. Deformation energy calculated using (a) a non-linear approach, wnl (Pa), (b) a linear approach, w! (Pa), and (c) the
percentage difference, JV , between the non-linear and linear cases at t=0.15s.
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Figure 7. Deformation energy calculated using (a) a non-linear approach, wnl (Pa), (b) a linear approach, w! (Pa), and (c) the
percentage difference, JV , between the non-linear and linear cases at t =0.5s.

Figure 8(c) reveals significantly larger differences. Notably, even after excluding the extreme values,
the energy relative difference exceeds 100% close to the boundary layer.

The whole evolution in time of the difference W with respect the linear case (43), is shown in a video,
which is included in the form of supplementary materials.

4.2. Comparison of the kinetic energy fields in linear and non-linear cases and the formation of energy
difference boundary layers

Kinetic energy fields serve as key indicators of velocities within a system under consideration and deserve
thorough investigation. Following Section 4.1, the highest (or lowest) value of the difference of the kinetic
energy, denoted by K and defined in equation (44), reached in the domain for each instant of time is shown
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Figure 8. Deformation energy calculated using (a) a non-linear approach, wn (Pa), (b) a linear approach, w (Pa), and (c) the

percentage difference, VV , between the non-linear and linear cases at t = 1.5s.
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Figure 9. Deformation energy calculated using (a) a non-linear approach, wn (Pa), (b) a linear approach, w (Pa), and (c) the
percentage difference, VV , between the non-linear and linear cases at t = 3s.

in Figure 10. Then, the contour plots of both the kinetic energy K™ calculated with our non-linear model
and the difference K are presented in Figures 11-14, 15, and 16.

As seen in Figure 11, the two considered models, linear and non-linear, show a remarkable difference
near the boundary where the transition from an harder to a softer layer occurs, i.e., where strong material
inhomogeneity occurs. It is worth noting that, just as in the Section 4.1, also for the kinetic energy we
focus on the first 3 seconds, i.e., in the time interval when the seismic waves acts on the domain. As one
can see, the difference continues to be not negligible also after the third second.

Figures 11(c) and 12(c) reveal that the largest differences in kinetic energy are initially concentrated
near the boundary between the bedrock and the softer layer. Subsequently, these differences propagate
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Figure 10. Maximum value of differences K with respect the time between the two cases (linear and non-linear) for (a) the whole
time interval of the performed analyses and (b) a zooming of the first 3 seconds.
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Figure I1. Kinetic energy calculated using (a) a non-linear approach, K (Pa), (b) a linear approach, K! (Pa), and (c) the percentage
difference, K , between the non-linear and linear cases at t = 0.15s.

through the softer material towards the rigid top layer. Notably, even during the initial stages of ground
excitation by the seismic action, the relative difference is substantial. For example, Figure 12(c) shows
that the difference between the non-linear and linear analyses can exceed 100%.

During the first fractions of second, period in which the seismic wave acts on the considered propa-
gation region (remember that the seismic action goes on for 3 s) the higher differences are concentrated
at the top of the propagation region, and exactly where the stiffness changes and a material non-linearity
is activated. The difference propagates from the harder layer, at the top, to the softer one and vice versa
because the reflection of the seismic wave (Figures 12(c) and 13(c)).

During the seismic excitation significant differences between linear and non-linear models are calcu-
lated. For example at =2 s (in Figure 14), it can observe that the main differences are mostly concentrated
in the top harder layer, and its value increases noticeably reaching very relevant values as it is shown,
for example, in Figure 14(c).
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Figure 12. Kinetic energy calculated using (a) a non-linear approach, K (Pa), (b) a linear approach, K! (Pa), and (c) the percentage
difference, IC, between the non-linear and linear cases at t =0.3s.
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Figure 13. Kinetic energy calculated using (a) a non-linear approach, K (Pa), (b) a linear approach, K! (Pa), and (c) the percentage
difference, IC, between the non-linear and linear cases at t = Is.

In Figure 10(b), a big peak of relative difference is clearly evident. To avoid commenting on values that
may be due to numerical errors, the contour plot in the neighboring of that instant of time (specifically
at r=2.6s), is shown in Figure 15. At this instant, the value of the difference is very high. Moreover, on
the harder top layer a region is clearly visible where the kinetic energy reaches a high value. This makes
the difference K (see the Figure 15(c)) absolutely non-negligible.

At the instant =3 s (Figure 16), when the seismic excitation ends, its effects continue to be relevant
in the region where the wave propagation is studied.

Also after the instant =3, the differences between the predictions of non-linear and linear mod-
els increase significantly as shown in Figure 10(a). This implies that the kinetic energy (and therefore
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Figure 14. Kinetic energy calculated using (a) a non-linear approach, K (Pa), (b) a linear approach, K! (Pa), and (c) the percentage
difference, K , between the non-linear and linear cases at t = 2s.
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Figure 15. Kinetic energy calculated using (a) a non-linear approach, K (Pa), (b) a linear approach, K! (Pa), and (c) the percentage
difference, K , between the non-linear and linear cases at t = 2.6s.

the velocities of each material point) calculated by means of a linear model does not seem to give reli-
able predictions. It is clear that such differences cannot be overlooked and that more careful modelling
assumptions are required. The whole evolution in time of the relative difference K with respect to the
kinetic energy calculated using the non-linear and the linear model (44), is shown with a video included
in the form of supplementary materials.

4.3. Comparison of acceleration fields

The accelerations (45) and (46) (either horizontal and vertical) in certain points have been calculated and
their differences (47) (between the non-linear and linear models) are seen to be substantial. These results
indicate a need to reconsider the current approaches used to predict seismic phenomena. The Figure 17
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Figure 16. Kinetic energy calculated using (a) a non-linear approach, K (Pa), (b) a linear approach, K! (Pa), and (c) the percentage
difference, K , between the non-linear and linear cases at t = 3s.
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Figure 17. Analyzed points.

shows the points which we have chosen, on the basis of the evidence gathered by Luca et al. [33], in order
to compare the predictions of linear and non-linear models: recall that the accelerations difference used
for getting the presented comparisons is defined in equation (47).

The first 6 point are chosen near the boundary between the bedrock layer and the softer one, while the
next 6 ones are taken close to the boundary between the softer and the top rigid layer. Either the horizontal
and vertical accelerations (it; and v; respectively for the linear and non-linear cases) and the difference a;
(calculated as in equations (45)—(47)) are plotted in Figures 18-29 for all the points defined in Figure 17.
The figures below (namely 18-29) are structured with the following scheme:

° On the left hand side the evolution in time of the accelerations, defined as in equations (45) and (46)
and scaled by the gravity acceleration g, of the considered point (for the linear i; and non-linear v;
case) are shown for each direction (i.e. for i=1, 2).

° On the right hand side the differences a;, denoted as in equation (47), are shown. Notably, these
differences are plotted as a fraction of the gravitational acceleration g.

In Figures 18-23, the accelerations of the points close to the boundary between the bedrock and the
softer layer are shown.

In Figures 18 and 19, the first couple of points are considered (Point 1 and Point 2). Although, for this
couple of points, the differences a; in equation (47) do not reach their highest values, they are also higher
than 0.2g which corresponds to an approximate difference of 28%.

Analyzing the couple of point that follows (i.e. Point 3 (Figure 20) and 4 (Figure 21)), the difference
increases by a substantial amount (see the differences of the vertical accelerations), reaching the impor-
tant value of about 0.7g. Those clearly are quantities that must warn the modellers and all those whose
decisions depend on their predictions.

At the upper boundary, between the softer layer and the harder block, on which the downtown of
L’Aquila is located, the values of the differences continue to be very high, having values higher than
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left) and their differences a; (pictures on the right), gotten by the equations (45)—(47) for the Point |.
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Figure 19. Comparison of the horizontal and vertical accelerations, between the non-linear Vi and linear i; case, (pictures on the
left) and their differences a; (picture on the right) gotten by the equations (45)—(47) for the Point 2.
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Figure 20. Comparison of the horizontal and vertical accelerations, between the non-linear Vi and linear i; case, (pictures on the
left) and their differences g; (picture on the right) gotten by the equations (45)—(47) for the Point 3.
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Figure 21. Comparison of the horizontal and vertical accelerations, between the non-linear v and linear ij; case, (pictures on the
left) and their differences a; (picture on the right) gotten by the equations (45)—(47) for the Point 4.
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Figure 22. Comparison of the horizontal and vertical accelerations, between the non-linear v; and linear i; case, (pictures on the
left) and their differences g; (picture on the right) gotten by the equations (45)—(47) for the Point 5.
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Figure 24. Comparison of the horizontal and vertical accelerations, between the non-linear Vi and linear i; case, (pictures on the
left) and their differences g; (picture on the right) gotten by the equations (45)—(47) for the Point 7.
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Figure 25. Comparison of the horizontal and vertical accelerations, ween the non-linear Vi and linear ij; case, (pictures on the left)
and their differences a; (picture on the right) gotten by the equations (45)—(47) for the Point 8.

20% of g and, in same case, reaching error around 70% of g (as in the Figures 27 and 29). In the following
figures, these strongly high values of the errors are shown.

The observed substantial discrepancies in the acceleration field impose a paradigm change in the
choices to be accepted when modelling seismic wave propagation. The non-linear phenomena require
a careful consideration due to their proven potential for significant impact. This emphasis is particu-
larly relevant in the light of the findings presented in this work: moreover, by now, modern theoretical
and numerical tools allow for the development of predictive analyses based on sophisticated non-linear
models.

5. Conclusion

The results of the numerical simulations presented in this work demonstrate that the thesis on which we
have based our investigation is correct: linear continuous models are not suitable to describe the effects
at ground of large energy earthquakes (Magnitude larger than 6 Mw), in particular when the superficial
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Figure 26. Comparison of the horizontal and vertical accelerations, between the non-linear v and linear ij; case, (pictures on the
left) and their differences g; (picture on the right) gotten by the equationsss (45)—(47) for the Point 9.
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Figure 27. Comparison of the horizontal and vertical accelerations, between the non-linear Vi and linear i; case, (pictures on the
left) and their differences g; (picture on the right) gotten by the (45)—(47) for the Point 10.

crust is constituted by inhomogeneous materials. We therefore claim that it is worth considering non-
linearities when conducting the analysis of seismic effects on structures and infrastructures. As it shown
at the section 4 large differences in the predicted values of deformations, velocities, and accelerations are
found when using linear or non-linear models. Moreover, using the non-linear inhomogeneous model
presented here we can predict where the highest values of accelerations must be expected, and therefore
we believe to have supplied an important guide to future experimental and surveying activities. More-
over the supplied predictions could change the seismic hazard evaluation, to be incorporated in the design
prescriptions. Aforementioned differences can make the linear seismic study useless, as not only the pre-
dicted values of most relevant quantities are quantitatively different, but also the qualitative features of
predicted phenomena may differ drastically. While the preliminary non-linear model presented here
requires significant refinement to accurately capture the complexities of the 2009 L’Aquila Earthquake,
it demonstrates a superior fit to available experimental data compared to linear models. To further assess
the model’s capabilities and limitations and to generalize its applicability beyond the specific case of the
Aterno River Valley and the 2009 ’Aquila earthquake, a systematic comparison with a wider range of
well-documented earthquake events will be the focus of future research. This will allow us to evaluate
the model’s robustness and identify any limitations in its predictive capabilities under various seismic
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Figure 28. Comparison of the horizontal and vertical accelerations, between the non-linear v; and linear i; case, (pictures on the
left) and their differences a; (picture on the right) gotten by the (45)—(47) for the Point | I.
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Figure 29. Comparison of the horizontal and vertical accelerations, between the non-linear Vi and linear i; case, (pictures on the
left) and their differences g; (picture on the right) gotten by the (45)—(47) for the Point 12.

conditions. In particular, we remark that with our 2D geometrically non-linear isotropic model, in which
stiffnesses are piecewise constant, we can predict more carefully, both quantitatively and qualitatively,
some experimental evidence concerning the measured spectral ratios: while this subject will be carefully
described in a future paper, in the present conclusion we will start reporting about preliminary, but very
suggestive, results concerning these ratios. This study highlights the significant role of assumptions, such
as boundary conditions and material properties, in influencing the accuracy of non-linear models. While
acknowledging the potential impact of simplified boundary conditions on the model’s ability to replicate
experimental data, it is crucial to recognize the complex interplay of various factors governing the behav-
ior of such systems. Geometric non-linearities represent one aspect of this complex interaction, alongside
other factors such as material non-linearities (e.g., plasticity, damage, cracking) and more sophisticated
boundary conditions. Future investigations will delve deeper into the influence of these additional factors
to provide a more comprehensive understanding of the system’s behavior. We expect that a predictive
modelling for the seismic wave propagation in the Aterno River Valley must include novel and relevant
material non-linearity assumptions, considered the proven expected high concentration of deformation
energy at the discontinuity interfaces and the present knowledge about the mechanical properties of geo-
materials. In fact, only by assuming the simplest geometric non-linearity behaviour, exposed in this work
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at the Section 3 (particularly at the Section 3.1), one has shown the highlighted remarkable differences in
the obtained predictions, when comparing them with those given by linear models. The results in Sec-
tion 4.1, relating to the deformation energy, give us important informations about the evolution of the
deformative state of the domain B for each case (either linear and non-linear) showing as the analysis
by a non-linear approach implies the possibility to describe relevant and expected phenomena. Also the
results show in the Section 4.2 provides an idea of how much more realistic it is to approach the seismic
problem with a non-linear modelling. Clearly, the most significative and impactful results for applications
are those relating to the accelerations (Section 4.3). These results deserve close attention because high dif-
ferences are visible and, even more importantly, it clearly shows that the linear approach, almost always,
underestimates this quantity. A quantity is the acceleration that represent the most important parameter
to consider not only during the study of seismic events but also in anti-seismic structural design. It has to
be remarked that a relevant underestimation of experimentally observed accelerations, in the framework
of linear theories, seems to have been already underlined in the literature (see EarthQuake Spectra by
Luca et al. [33]) Having obtained the prediction for seismic accelerations one can calculate, by means of
the fast Fourier transform (using a strong smoothing in order to avoid the peaks generated by numerical
errors), the spectrum ratios between the horizontal and vertical accelerations of some specifically cho-
sen points in the considered region (Point 8 and Point 12 in Figure 17) and the horizontal and vertical
accelerations spectrum of a reference point (Point 1 in Figure 17); The chosen reference point for spec-
tral ratios is the Point 1 because it stays into the bedrock. These plots are shown at the Figures 30 and
31. Then these ratios have been compared with the Figure 32 that shows the Figure 11 (reproduced here
without any change) from Luca et al. [33]. In particular the comparison is carried out with the Figure 11a
(for the Point 8 in Figure 30) and the Figure 11b (for the Point 12 in Figure 31). The station named AQPK
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in Figure 32 is located not far from the Point 8 whereas the station named GDIFin Figure 32 is located
not far from the Point 12.

Comparing the Figure 30 with the Figure 11(a) by Luca et al. [33], itis clear that the non-linear analysis
fits better with the experimental data than the linear analysis. Figure 10(a) and (b) of Luca et al. [33]
(both shown in Figure 32) compare QUAD4M and BESOIL results, and confirm that both codes are able
to predict the low-frequency amplification peak in the deepest part of the basin. BESOIL solutions are
more complex because the code allows higher frequencies. The high-frequency behavior found using
BESOIL code cannot be considered physically significant because the model used is not realistic at a
small scale. Also the QUADA4M results seem to be less sensitive to frequencies higher than 1.5 Hz because
of the grid spacing used. Furthermore, non-linear analysis removes the non-experimentally observed
peaks in the frequency range higher than 1Hz that were found by Luca et al. [33], which used the linear
codes (Besoil and Quad4m). The non-linear approach naturally cuts off these peaks. Future analysis will
detail the reasons for which this qualitative property of non-linear models holds and will give stronger
motivations for the use of spectral ratios to validate continuum models for the “seismic wave propagation”
zone studied in the present paper.

A 2D model, while insufficient to fully capture the complex 3D geological structure of the Aterno
River Valley, offers a computationally efficient approach to investigate the influence of non-linearity on
system behaviour under large excitations. While acknowledging the inherent limitations of such a simpli-
fication, we argue that this 2D model effectively demonstrates the significant role of non-linearity. Future
investigations will need to refine the just mentioned analysis, by introducing a careful and more realistic
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3D modelling, developing appropriate numerical method for non-linear system [120,121], enlarging the
region where wave propagation is studied, in order to include the sites where other accelerometer sta-
tions of National Survey Network of Civil Protection were localised. These stations have been active since
the middle of 1990s and have recorded a large number of earthquakes having different magnitude and
hypocenters. Moreover in order to get a careful prediction of origins and onset of the seismic actions,
from a geological and mechanical point of view, models of tectonic dynamic crack propagation must be
considered, generalising and adapting the methods presented by Barchiesi et al. [122], Fabbrocino et al.
[123], Placidi and Barchiesi [124], Placidi et al. [125], Turco et al. [126]. In this way, it will be possible to
extend the regions where wave propagation is predicted, to include also hypocenters. We also expect that
the presented results will allow for a more effective design for the new structures (and for the restora-
tion of the damaged one) by exploiting the also knowledge and the conceptual tools which are already
available and were used, e.g., by Masi et al. [127], Saitta et al. [128], Salvatori [129]. In conclusion, it
is clearly well-established that the computational cost associated with non-linear analysis is significantly
higher than that of linear one. Consequently, it is reasonable to question the extent to which such com-
putational demands are justified in the study of seismic phenomena. However, the results obtained from
our non-linear analysis provide compelling evidence to support this approach. These findings cannot be
disregarded and warrant careful consideration, as they offer a more accurate means of predicting the
effects of high-energy seismic events given the current state of technology. As long as our non-linear
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models continue to yield results that deviate significantly from those obtained through linear analysis,
while simultaneously demonstrating a high degree of agreement with experimental data, we believe that
further refinement of these models is warranted. Such refinements are essential for enhancing the safety
of human life and improving the design of structures.
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