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Abstract

A two-dimensional (2D) reduced-order generalised continuum model within the framework of the three-dimensional
(3D) deformations is deduced from a 3D Cauchy continuum model by imposing a micro-macro kinematical map, which
is linear in the direction normal to the corneal surface. This kinematical assumption is plausible as the cornea thickness
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is much smaller than its diameter. We use the obtained 2D generalised continuum that incorporates a kinematically
independent thickness to model the changes of shape induced in corneas: (I) by the changes of cornea mechanical
properties whose aetiology can be found in the complex (and not completely understood yet) pathogenic process
causing keratoconus, (2) by penetrating keratoplasty, and (3) degeneration of both patient residual corneal tissue and
transplanted corneal tissue after transplant. Ve postulate that growth and regeneration phenomena occurring in the
cornea shape it following the “elastic” solutions, which we have calculated. The preliminary obtained predictions seem
to promise significant applicative developments and are in good qualitative agreement with experimental results: future
investigations will need to improve the presented model by considering explicitly the remodelling phenomena and a more
detailed analysis of the evolution of metabolically driven mechanical damage of corneal tissue and its visco-plasticity.
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I. Introduction

The structure of the cornea has been extensively investigated in the literature for a long time (see, e.g.,
the fundamental work [1] focusing on keratoconus). Here, we give a short description of some of the
works on the subject that are available in the literature and relevant to the present modelling effort. Very
appropriate for the modelling of corneal mechanical properties, needed here, are the papers [2—4], which
formulate, in a mechanically precise language, the available knowledge about the physiology of human
corneas. Some preliminary results relating to those contained in this paper were presented in the work by
dell’Isola et al. [5]: the very interesting and fruitful discussions with the co-authors of that presentation
are explicitly acknowledged here.

I.1. A short description of corneal structure

The corneal tissue has a complex microstructure. Here, we quote the fundamental anatomical facts on
which we base our modelling assumptions.

In Figure 1, we show schematically the anatomy of the anterior part of the human eye: the orange
part is the vitreous body, which allows the light rays to react with the posterior part of the eye, where the
retina is located.

Zooming in for a close-up of the layer, which is called the cornea, we can distinguish several different
layers, all of which play a role in the onset and development of keratoconus. In this preliminary modelling
analysis, we assume, for these layers, a unique three-dimensional (3D) continuous model, and we account
for its microstructure by means of suitable inhomogeneities of the constitutive equations for the fourth-
order linear elasticity tensor (see the following sections for more details), used in 3D Cauchy elastic
continua.

In Figure 1, we show a schematic picture of the different corneal layers, which, all together, constitute
the corneal tissue. Once initiated, the keratoconus development is related to the progressive dissolution of
Bowman’s layer (located, see Figure 1 again, between the corneal epithelium and the stroma): for more
details about this point, the reader can consult the work by [6].

In the degenerative process leading to keratoconus, another important mechanical and geometrical
property of the cornea plays a relevant role: the cornea thickness.

In Figure 2, we show two contour plots for the same cornea affected by keratoconus. It has to be
remarked that while the curvature of the outer corneal surface is concentrated around a point displaced
below (in the direction of the weight), the thickness is rather symmetrical around the central point of the
cornea. As the degeneration (decrease) of corneal elastic moduli is most likely correlated to the reduction
in corneal thickness, we conjecture that the externally applied loads (such as the interaction with eyelids
and the weight of both the cornea and the aqueous humour in contact with it) play a role in the observed
shape of corneas affected by keratoconus due to the resultant shear stress on the cornea. This statement
will be proved by means of numerical simulations in the following sections.



dell’lsola et al. 3

Structures of the Eye

Retina

Conjunctiva

Iris

Pupil

Cornea

Epithelium ﬂ‘ /
//

1y

Bowman's
membrane |

Stroma “
—Y‘.

\

13
|’
o

g

i A i

y
Descemet's i
membrane

Endothelium Descemet's

Figure |. A schematic representation of the anatomy of the human eye with a magnified view of the corneal layers. Photo by National
Institutes of Health (NIH), licensed under CC BY-NC 2.0.
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Figure 2. Typical corneal curvature and thickness in a keratoconus case.

I.2. Etiology and shape deformations induced by keratoconus

We have found it very useful to consult the fundamental paper [7]: when no explicit reference is given,
we mean that we obtained from it the information reported below.

The influence of, at least, six genes has been found, up to now, to be associated with the onset of kerato-
conus: these genes include BANP-ZNF469, COL4A4, FOXO1, FNDC3B, IMMP2L, and RXRA-COL5AL,
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Figure 3. Shapes of a normal cornea, left, compared with that of a cornea affected by keratoconus.

but there is evidence about a specific role also played by other genes. We are far from understanding the
exact genetic malfunctioning leading to the disease: some further hints about its onset mechanisms may
be given by the observation that keratoconus is correlated with some atopic diseases like asthma, aller-
gies, and eczema and that it is very frequent that several or all of these diseases affect the same person
simultaneously. According to the available evidence [8], the most important risk factors for keratoconus
are a family history of keratoconus, allergy, asthma, mechanical stress such as eye rubbing or eyelids
extra-pressure, and eczema.

What is certain is that patients with a parent, sibling, or child who has keratoconus have 15 to 67 times
higher risk of developing corneal ectasia (i.e., a change in the corneal curvature leading to impairing
optical defects) compared to patients with no affected relatives: Keratoconus surely affects about 1 in
2000 people, but some estimates suggest that its incidence may be as high as 1 in 400 individuals.!

In Figure 3, the typical shape of a cornea affected by keratoconus is shown, while in Figure 4, the digital
reconstruction of typical outer shapes of healthy and keratoconus affected corneal tissues is shown. The
reader will observe that the “drop-like” shape of keratoconus-affected corneas shows a “lower” bulge: one
of the theses put forward in the present paper is that this shape is driven by multiple factors. The numerical
analysis presented in this paper indicates that, among the considered deformation mechanisms, probably
the most dominant one is related to two main factors: specifically, the uniform damage of keratoconus
corneas and the mechanical effects of the eyelids on the deformation shapes of the corneas. Indeed, as
corneas are living tissues, the presence of external interacting forces, after the degeneration of mechani-
cal properties, permanently changes the keratoconus cornea shape, with detrimental optical effects. The
situation is even worse in the presence of transplanted corneas whose mechanical properties are highly
inhomogeneous: the donor cornea is essentially healthy, while the residual patient corneal tissue remains
affected by keratoconus and shows much weaker mechanical stiffness. In conclusion, we claim that (1) it
is logically more economical to assume that keratoconus shapes are the consequence of a uniform degen-
eration of cornea and of the effects of interaction with eyelids, and (2) cornea transplants must also be
designed taking into account the mechanical properties of the residual patient corneal tissue.

In Figure 5, a representative contour plot of corneal curvatures in corneas affected by keratoconus is
shown.

In Figure 6, itis shown the shape of a transplanted cornea with severe residual astigmatism (on the left)
and the contour plot of calculated sagittal curvature (on the right). It has to be remarked that the penetrat-
ing keratoplasty technique used in the presented case used a selective removal of suture stitches, which
aimed at obtaining the observed nearly vertical pattern of concentrated curvature. This technique allowed
for an optical correction using eyeglasses, albeit with very high diopters (19 for equivalent astigmatism
and 5 for equivalent hypermetropia).

In Figure 7, the elaborated images were obtained by digital elaboration of several pictures of a trans-
planted cornea. Its final shape and curvature appear to be highly irregular: the digital image correlation,
on which the used image reconstruction software (i.e., OCULUS Pentacam®) is based, does not man-
age to give a result. In the considered clinical case, the penetrating keratoplasty was followed by an
initial event of rejection, blocked with heavy anti-rejection treatment. Indeed, the corneal tissue degener-
ation, which was caused by the rejection initiation and by the following corneal degeneration, made the
shape so irregular that the available digital recognition techniques failed in producing the whole surface

rendering.2
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Figure 4. Digital reconstruction of the surface of a normal cornea, left, compared with that of a cornea affected by keratoconus.
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Figure 5. Contour plot of curvature field in a cornea affected by keratoconus.
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Figure 6. Digital elaboration of several images of a transplanted cornea with severe residual astigmatism (19 diopters).
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Figure 7. Digital elaboration of a transplanted cornea with extremely irregular shape and curvature.

Light refraction Light refraction
in a healthy eye in keratoconus

Figure 8. What occurs when light rays are multiply and irregularly diffracted by corneas affected by keratoconus.

It is also believed that keratoconus is related to some malfunctioning of the physiological corneal
regeneration process, which mainly occurs in its epithelium layer. The models developed for describ-
ing the mechanical behaviour of self-regenerating tissues [9-11] must be adapted to the case of corneal
epithelium, to determine the impact of this possible etiological cause of the disappearance of Bowman’s
layer and the consequent keratoconus degeneration.

[.3. The effects of keratoconus on vision

A cornea affected by keratoconus is not behaving as it should: i.e., as a lens converging and focusing
images on the retina (see Figure 8).

Keratoconus, in an advanced stage, results in (1) blurry vision, (2) double or multiple vision, (3)
nearsightedness, (4) very irregular astigmatism, and (5) light sensitivity. All these symptoms may lead
to a very poor quality of life; in fact, usually, both eyes are affected. In the most severe cases, a scarring
or a circle may be seen within the cornea.

In Figure 9, we can see a reconstruction of the multiple images seen by a person with keratoconus.
For instance, as observed already by Nottingham [1] in 1854: “a candle appears like a big number of
lights, confusedly running into one another, one letter is blurred by several of its images surrounding
and superimposed on it.”

This pattern is highly variable from case to case and often takes on new forms for the same patient,
sometimes even on a daily basis: some patients may commonly notice streaking and flaring distortion
around light sources, and some others even notice that the images are moving relatively to one another
in time, in a synchronous way with their heartbeat.

These optical effects can be explained by some histological observations of the corneal-stroma struc-
tural changes that are observed in corneal tissue affected by keratoconus. In Figure 10, it is schematically
shown the result of a typical histopathology exam of such a tissue: even in the presence of corneal-stroma
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Figure 10. A typical histopathology exam of corneal stroma affected by keratoconus.

moderate thinning, some wrinkles of the posterior and anterior surfaces are observed: their effect on light
refraction is the ultimate cause of sight impairing (in this context, we cite Cogan [12] for its beautiful early
results).

1.4. The aim of the present paper

The aim of this paper is to develop and analyse a 2D reduced-order generalised continuum model that can
move in a 3D space. We want to apply it to the study of the biomechanical behaviour of corneas affected
by keratoconus before and after penetrating keratoplasty. The model is derived from a 3D continuum the-
ory by applying a micro-macro kinematical map, simplifying the corneal structure while continuing to
account for the essential mechanical properties of the considered system. By incorporating variations in
material properties due to pathological degeneration and surgical intervention, the study seeks to provide
insights into the deformation mechanisms that lead to characteristic shape changes in keratoconus-
affected and transplanted corneas. Furthermore, the paper explores the mechanical agents that, together
with internal ocular pressure, reshape keratoconus-affected corneas before and after transplants, offering
a multi-factorial explanation for the asymmetric bulging observed in keratoconus patients. Our results
contribute to a more detailed description of corneal mechanics, with implications for improving surgical
outcomes and developing more effective treatment strategies for corneal pathologies.

2. Formulation of the used 3D Cauchy continuum model

We model, at the micro-level, the cornea as a 3D Cauchy continuum whose deformation energy depends
quadratically on the Cauchy—Green non-linear deformation measure C. However, such a 3D model is too
detailed and cannot be easily used to explore the consequences of our modelling assumptions because of
the computational burden implied in a long series of parametric simulations. To get a more viable model,
we will use a reduction order procedure, producing a generalised 2D continuum model,3 in which at
least the additional kinematical parameter “thickness” of the corneal is added to the standard kinemati-
cal parameters used in the theory of shells. This procedure is of the same kind as those introduced by
Eremeyev et al. [13-17].
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2.1. Kinematics and deformation measures
The placement field IT is defined in the reference domain D x [—1ly/2, [y/2]. In formulas:

IL:D x [—ly/2, lp/2] — &> (1)

where the plane region D C R2 will be assumed to be elliptical, & 3 is the Euclidean 3D space of positions
and [y denotes the cornea reference thickness. A generic point X in the reference domain D x [—[y/2, [y /2]
is, therefore, determined by the two coordinates X* (o= 1,2 ) spanning in the plane region D and a third

coordinate X3 € [~1/2, [/2]; when necessary, we will denote {E,, E3} the vector basis in the reference
configuration.

If T7&3 denotes the vector space of the translations in &3 and {e;}, i=1,2,3, is a basis in it, we can
introduce the coordinates representation

IL(X) = I/ (X%, X)e;. (2)
By introducing the placement gradient:
o’
ox’/

where we adopt the notation employing lowercase letters for spatial coordinates and capital letters for
material coordinates, the Cauchy—Green deformation measure C is given by

F:=VII, F =

3)

C:=F'F;, Cl=FtF), 4)

where the superscript T denotes the transposition of a tensor.
The Green—Saint Venant tensor is given by

2G:=F'F—-1 (5)

where I is the identity tensor in the reference configuration.

In this paper, we will not try to introduce higher gradient continuum models at the “micro” level at
which the cornea shape is modelled as a subset of Euclidean space having non-vanishing volume, i.e., by
means of higher gradient continuum models. When this effort will be attempted, then the deformation
measures have to include those listed in works by Auffray et al. [18] and dell’Isola et al. [19], Dell’Isola
etal. [20]: i.e., all the needed Lagrangian gradients of G.

2.2. Deformation energy functional

The most general first-gradient deformation energy functional, which can be introduced for the consid-
ered 3D Cauchy continuum, has the following form:

el .= / ey (G, X) av (6)
Dx[~ly/2.lp/2]

where ey4¢/ represents the volume density of deformation energy in the material point X and dV is the
volume measure in the reference configuration.

We will limit ourselves (albeit we are aware of the fact that this assumption is very limiting, see e.g.,
Pandolfi and Holzapfel [2], Pandolfi and Manganiello [3], Pandolfi and Vasta [4], so that in future investi-
gations we will be obliged to generalise it) to use a volume density of deformation energy that is quadratic
in the non-linear deformation measure G. In formulas:

1
ey = S Gl GY CIY. 7
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For our modelling purposes, the stiffness tensor C must depend on the material particle X: in fact,
we will model the mechanical damage, which is induced by the pathogenic process causing keratoconus,
by assuming that the values of one or more among the stiffness parameters in the tensor C decrease, in
some cases even non-uniformly, in the variables x4

In the present paper, specifically, we consider a heterogeneous compliance tensor S, which is related
to the usual engineering constants for orthotropic materials [21] and using Voigt notation, as given by the
formulas:

I i i
S =y Sn =y, S33=y;>
-V —U —VU
Sip=-—7%  Spz=753  Sp=-72 8)
_ 1 _ 1 _ 1
SUZ g0 STy ST

where Young’s moduli in the directions of orthotropy are Yi, Y,, Y3; Poisson’s ratios are vyp, v13, 173;
and the shear moduli are pq3, (413, t23. The stiffness tensor C is evaluated from the inverse of the matrix
representation of S.

To better describe the properties of physiological or degenerated corneas, we will assume that the
region D can be partitioned into several regions (see again Pandolfi and Holzapfel [2], Pandolfi and Man-
ganiello [3], Pandolfi and Vasta [4], De Bellis et al. [22, 23], Pandolfi et al. [24, 25]), in each of which
the stiffness parameters have some specific values, modelling the fibrous structure of the cornea: they
are shown in Figure 11.° Specifically, the elastic moduli, including the Young moduli and shear moduli,
are normalised using a characteristic value of the Young modulus for corneal tissue, which is established
at 0.2 MPa [26,27].

The two central bands forming the cross exhibit pronounced stiffness, vertically in the vertical band
and horizontally in the horizontal band, while within the residual lobes, the stiffness tensor is predom-
inantly transversally isotropic, characterised by a symmetry axis directed along the thickness of the
cornea. The material properties were assigned with particular attention to the lamellar structure of col-
lagen fibrils, which are known, from a macroscopic point of view, to be arranged following the pattern
shown in Figure 11 to provide corneal strength and stability.

2.3. External work functional

The previously introduced deformation energy functional form implies that, in the framework of the
introduced model, the following particular external work functional can be sustained:

SWER = / (—pn-O0I1) J4dAp + / (—p*g-oIl)dV 9)
DX{—Z()/z} DX[—Z()/z,lo/Z]
where
e the p* and g denote, respectively, the reference volume mass density and the gravity acceleration;
e the pressure p will be assumed to be constant in space;
° oI is the virtual variation of placement;
° dAp and dV are, respectively, the area and volume measures of the domain D in the reference

configuration;

n is the current normal to the surface IT (D x {—[;,/2}); and

e ], represents the change of area density from reference to actual configuration. These last two are
given by well-known Piola formulas [28]:

F~'N
n=———_
HF—TN

in terms of the placement gradient and the reference unit normal N.

- HF—TNH detF. (10)
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Figure 1 1. Dimensionless engineering constants for orthotropic materials: (a) elastic modulus Y|, (b) elastic modulus Y5, (c) elastic
modulus Y3, (d) Poisson ratio v, (€) Poisson ratio 3, (f) Poisson ratio 143, (g) shear modulus j1|7, (h) shear modulus (3, (i) shear
modulus f153.

3. Reduction to a 2D generalised continuum model

In order to describe the damage-induced changes of shape in corneas, using a model whose predic-
tion can be obtained with relatively lower computational complexity, we prefer to use a 2D continuum
model. However, as the thickness of the cornea plays a relevant role in the phenomena whose prediction
we are interested in, the kinematics to be introduced must be enriched with respect to the one used
in standard shell theory. Therefore, together with the mean surface placement field Ilg, as a further
kinematical descriptor, the additional vector field d describing the current cornea thickness is con-
sidered to complete the set of kinematical descriptors to be used in the reduced-order 2D model. A
micro-macro kinematical map will be used to postulate a form of 3D placement in terms of the 2D kine-
matical descriptors: the Ansatz which we accept here is fully justified by the physiological ratio between
the corneal thickness and diameter (= 0.04) and by the kind of applied loads to which consideration is
limited.

3.1. 2D kinematics and micro-macro kinematical map

The micro-macro kinematical map, which we assume, gives the 3D placement introduced in equation (1)
by means of the following formula:

(XY, X°) = (XY + X°d(X™) (11)
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Figure 12. Sketch of the kinematical maps.
where
Mg:D— &3 d:D—TE (12)

are, respectively, the mean surface placement and the corneal thickness vector fields (see Figure 12). We
note that the newly introduced field d represents the image of the mean surface normal unit vector through
the map II. This vector field is not constrained to remaining normal to the current mean surface, nor is
it required to remain a unit vector.
Moreover, we assume that
C(X)=Co (X*) +X>Cy (X) . (13)

The hypothesis that assumes linear dependence in X3 represents the simplest explanation for the mechan-
ical inhomogeneity observed in keratoconus corneas (see Pandolfi and Holzapfel [2]). Nonetheless, the
numerical analyses conducted herein indicate the necessity to extend this hypothesis by incorporating a
more complex dependence on X3

Using equation (11), we can calculate the corresponding 3D deformation gradient

6IIR 3 od 3 3 3
e’ o' VoII X°Ved+dRE 14
F= X QE“+X 7§XOZ®E +dQE = RYLR R (14)
and its transpose
8IIR 3 o od 3 3 3
F'=E°® —+XE°® — +E°®d=(VzIlL +X° (Ved) +E°®d 1
X X ( R R) ( R ) (15)

where we have introduced the notation

)
VRi= 5o O B (16)

In this way, we arrive to represent the 3D Cauchy—Green tensor as follows
C=F F=Cr+Xtr (FR® Vgd+Vrd® Fg) +
2
+ () tr (Vrd@ Vid) + FRd B>+ B> @ FRd+
1 2 533 2 213 o i3
+§ Velld|"®E°+E° @Vg|d|")+|d||” E°®E> (17)

where the tensor product is to be considered with respect to the reference vector space and the trace,
tr(-), with respect to the current vector space; in formulas, if gij denotes the inner product in the current
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configuration and

oIl o4 Ok o4
tr (FROVRrd+VrdQ Fg) = g; <ax§38;?,13 M%) EP & E“ .
tr(Ved@ Ved) = g (5%8%) EP @ E
Moreover, we have used the notations:
Fg:=VgIlg; (FR)o = px&
Cr:=F}Fp: (CR)S = (FR)] (FR)}, (19)
B .
Fld: (F;,fd) — (Fp)? d'

Therefore, in the introduced reduced-order model, the (objective) deformation measures are as
follows:

2 2
Velldl®: Fgd: Cg: |d|
tr (Vrd ® Vid) (20)
tr (FR® Vrd+ Vgd & Fp)

The Green—Saint-Venant tensor is, therefore, given by

2G=F F—I1=2Ggr+ X tr (FR® Vgd+ Vd® Fg) +
+ <X3)2 tr(Ved® Vid) + FRd 9 B + B3 @ Fd +
5 (Veld? e B+ B o Vg lld) + (1P 1) B o B @
where we have used the decomposition of the identity
I=E“QEL+E’®E3=:Ig + E> © E3 (22)

and the notation
2GR =Cg — Ij. (23)

The shown micro-macro kinematical map can be generalised in various ways: for instance, by assum-
ing a different dependence on X3 (possibly a higher order polynomial or a suitably chosen other function)
Dell’Isola and Kosinski [29] or explicitly introducing in it the gradient of placement or the gradient of
thickness, in order to account, at macro-level, for the energies related to the high gradients, at micro-
level, of micro-placement or of micro-stifftness [30-32]. An interesting effort for getting a micro-macro
identification for a 3D continuum model starting from a discrete microscopic truss model is made in
the work by Kory et al. [33]. We remark that the large shape and asymmetric variations occurring in
keratoconus corneas before and after penetrating keratoplasty cannot be shown in the just cited paper,
as both the micro-macro identification and the study of the corneal deformation are made in the cylin-
drical symmetry case. Therefore, herein, we present both a 2D and a 3D continuum model in which
general 3D displacements and deformations can occur. We emphasise that it is essential, in the study of
the keratoconus, to take into account both corneal anisotropy and inhomogeneity.
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3.2. 2D deformation energy functional

The most general first gradient deformation energy functional, which can be introduced for considered
2D generalised continua, has the following form:

2 Fhd: Cp;

d|

ngef i:/esdef (vR Hd‘
D

21tr (VRd® Vgd) ;tr (FR @ Vgd + Vd ® Fg) ;XR) dAp (24)

where ¢ Sdef represents the surface density of deformation energy in the material point X € D given by
the coordinates X* and dAp is the surface measure in the reference configuration.

The micro-macro kinematical map allows for an identification of a form of esdef in terms of the
stiffness tensor field C (X) by imposing the equality of 96T with &y9¢.

In fact,
+10/2
esdel (x) = / ey (G, x2, X3) dx®. (25)
—lp/2
As we have assumed equation (7), we have
+l()/2
1
egdel (x) = / 5GZLM(XCX,X3)Gf,}’(xa,X3)(C’LWIL{,((X"{)(3)dx3. (26)
—1y/2

def can be, then, simply obtained by replacing in the last equation the reduction

The explicit form of eg
formula (21) and (13).

In the present paper, we find equilibrium configurations for keratoconus cornea and transplanted
corneas by minimising the just postulated deformation and total energy. The kinematical parameters to
be chosen for this minimisation are the displacement u(X“) = IIg — Xy of the reference domain D, which
characterises the middle surface, and the variable d(X®), which accounts for the influence of thickness
changes. In the present treatment, finding the strong form of the equilibrium equation, i.e., the governing
PDE with corresponding natural boundary conditions, is not required because we will immediately use
anumerical integration scheme based on finite element minimisation techniques and essential boundary
conditions.

Specifically, to clarify the weak form of the governing equation, we introduce the following notation:

A:tr(FR®VRd+VRd®FR), (27)
H= tI'(VRd® VRd) , (28)

0=F}an B + B o FRd+ 3 (Valld|* 0 B+ B o Vgla]’) + (ld]* - NE e B 9
which simplifies the Green—Saint-Venant tensor as below:
2G=2Gg+X A+ (X*)’ H+ Q. (30)

By substituting equations (30) and (13) into equation (26) and integrating over X3-Variable, the surface
density of deformation energy becomes:

I 1 ! I
esdef _ 50 (GR(COGR + EGRCOQ+ EQCOGR + 4Q(COQ> +
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1 1 1 1
+ EGRCIA + EACIGR + ZA(C1Q+ 4Q<C1A> + 1eo
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<4H(COH+ JACIH + 4HC1A> . (3D

The corresponding expression for the 2D deformation energy & Sdef (as defined in equation (24)), there-
fore, by using only two-dimensional fields, incorporates some 3D deformation effects based on the
assumed linear dependence of the 3D placement I1.

By applying the same methodology to the external work functional (9), and incorporating therein the
kinematical simplifying assumption (11), results in the derivation of the reduced form of external virtual
work, which is expressed as follows:

5)/\;}%’“: / (—pn-oII) JAdAD+/ (—pf\gﬁ") dAp (32)
Dx{—Iy/2} D

where p} represents the mass density per unit of area of the cornea.
Therefore, the two-dimensional governing equation of the cornea can be explicitly expressed using
directly equations (31) and (32) as follows:

58T — oWt = 0. (33)

3.3. Boundary conditions in 2D generalised continuum model
The essential boundary conditions, which can be imposed in every point in 9D, are

vX®eD HR(Xa):XR—l-Uo(Xa)

(34)
VX“eD d(X*) =N+vy(X¥)
where the fields Uy and v are assigned boundary displacements and thickness variations, respectively.
The integration by parts of the energy functional given in equation (24) can give the corresponding
natural boundary conditions. In the present work, we start our analysis based on essential boundary
conditions only: more detailed modelling of the mechanical connection between the cornea, the sclera and

the other structural elements of the bulbus oculi will necessarily require this further modelling analysis.%

4. Calculation of deformed shapes with varying values of the externally applied
uniform pressure

In order to evaluate the predictive capabilities of the proposed reduced model, we conducted numerical
simulations utilising the finite element method. We implemented a numerical code based on the proposed
model within the commercial software Comsol Multiphysics. This software allows us to perform finite
element analysis in a weak formulation using directly equation (33).

In the numerical simulation, we use a dimensionless form for the problem at hand since it simplifies
analysis, enhances the understanding of underlying phenomena, and allows for more efficient and accu-
rate solutions. This non-dimensional representation of the problem is achieved by normalising the lengths
relative to the characteristic length L, specifically referring to the major semi-axis of the cornea in the
horizontal direction, which is assumed to be 5.5 mm. The elastic moduli, encompassing both Young’s and
shear moduli, are normalised with respect to the characteristic Young modulus of the cornea, denoted
as Yy, established at 0.2 MPa. The intraocular pressure (IOP), which denotes the fluid pressure exerted
within the eye and consequently on the cornea, is within the range of 10-20 mmHg (equivalent to 1.333-
2.666 kPa) [34] and is similarly normalised by the characteristic Young modulus Y)), as is the specific
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Figure 13. Equilibrium shape of a healthy cornea under the pressure of the aqueous humour: (a) perspective view, (b) definition of
cutting planes, (c) transverse cut, (d) sagittal cut.

weight pj g. Herein, the mass density per unit area is set to be 0.504 kg/m2 [35], where we assumed a
characteristic thickness for the cornea of 480 pum.

At first, we consider the reference case of a normal, healthy cornea as a benchmark for having the
shape of the cornea in this significant state. The corneal model was constructed based on an idealised,
slightly elliptical geometry (eccentricity of about 0.3412 with the major axis horizontal) representing a
healthy human cornea.

The mesh considered for the discretisation is made with 10,240 quadrilateral elements solved for
251,310 degrees of freedom. The interpolation functions employed for the discretisation of the two
kinematical descriptors, namely, the displacement u and thickness field d, are quadratic Lagrangian poly-
nomials. This is because the energy requires shape functions that belong to at least the Hilbert space H!
(for further details on relevant numerical methods, refer to, e.g., the works by Greco et al. [36], Cuomo
and Greco [37], Greco and Cuomo [38], Battista et al. [39], and Dell’Erba et al. [40]).

4.1. The case of C; =0.

In the first scenario, we assume a case where the stiffness does not change along the transverse corneal
direction. Specifically, we apply a uniform dimensionless pressure of 0.015 using the stiffness tensor
evaluated with the engineering constants shown in Figure 11 with clamped boundary conditions (z =0
and d = N). The simulation results are shown in Figure 13. The figure features a perspective view of a
healthy cornea, along with two sections aligned with the transverse and sagittal planes, which illustrate
the reconstruction of thickness via the variable d. Due to the symmetry of the problem, the two cut
profiles are nearly identical.

Second, we conducted a parametric analysis to study the effect of the internal pressure surplus on
the deformed shape of the corneal surface, considering varying pressure values. In Figure 14, the two
surfaces delimiting the cornea along the horizontal cut for the pertained pressure are displayed. The cuts
related to the sagittal direction are very similar; thus, for the sake of brevity, we omit them here.
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Figure 14. Transverse cuts for the reference cornea with different values of inner dimensionless pressure.

0.087r —0.0067

0.0861 —0.011467
—0.016233
0.021

0.085¢
0.0841
0.083
0.082
0.081f

0.08r
0.079
0.078r
0.077}
0.0761
0.075f

-1 -0.5 0 0.5 1

thickness

Figure 15. Thickness of the cornea for different pressures on the transverse plane.

To compare the results, we plot the diverse resulting thickness of the cornea under the pressures taken
into account. From Figure 15, overall, the thickness appears to be uneven: a little smaller at the centre due
to the larger stiffness localised there; a noticeable boundary layer is also detected due to the considered
boundary conditions (in generalised continua it is possible to study the modalities and situations in which
boundary layers arise, see, e.g., Laudato et al. [41], Barchiesi et al. [42], Eremeyev et al. [43]). Besides,
the increase in the pressure acting on the inner part of the cornea causes the tissue to become thinner
accordingly.

The presented analysis may be of interest in studying the effects of high eye pressure on corneal
tissues.

4.2. The case of C| #0.

In the work by Pandolfi and Holzapfel [2], it is shown how one should expect that the mechanical proper-
ties are also varying in the transverse direction of corneas. Therefore, coherently with the approximations
assumed in the present work, we allow for a (linear) variation of the stiffness tensor C with respect to X3,
In the case of healthy corneas, though, due to the symmetry of the problem, there is no noticeable dif-
ference in the equilibrium shape of the cornea. However, this could change when some more significant
damage mechanisms due to the pathology of keratoconus do appeatr.
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Figure 16. Case |: Damage v applied to the elastic moduli in the simulations centred inside the stiffer region.

It has also to be remarked that it is conceivable to study the mechanical properties of both healthy and
keratoconus corneas by using measurements based on wave propagation inside them. With a reasonably
accurate analysis, we believe that it will be possible to obtain this result by using the methods presented in
the works by Turco and Barchiesi [44] and Ciallella [45], Eugster [46], and Yildizdag et al. [47], where it is
proposed to characterise the mechanical behaviour of generalised continua by observing the modalities
in which waves are propagating inside them.

5. Effects of non-uniform pathologically induced damage on cornea deformed shapes

It has been observed that in keratoconus corneas, the bulge always occurs in the lower part. It has been
postulated that this may be caused by anatomical and structural differences between the superior and
inferior parts of the cornea. The last one is biomechanically weaker than the superior cornea. In the
works by Elsheikh et al. [48] and Meek et al. [49], it has been shown there is less collagen cross-linking
and lower structural rigidity in the inferior portion, making it more prone to ectatic deformation, i.e.,
a structural change involving thinning and bulging of the tissue. Moreover, the collagen lamellae in the
superior cornea are more tightly packed and organised compared to the inferior region, adding to the
structural disparity [50]. For the seek of simplicity, in this section, we assume the presence of a fixed
externally applied ocular pressure on one side of the cornea greater than atmospheric pressure, and we
postulate some space variation, controlled via a few parameters, for the fields of the stiffnesses parame-
ters, characterising the fourth-order tensor C and examine how varying aforementioned parameters one
can get different equilibrium forms and thicknesses. We are aware of the fact that a more detailed model
is necessary to better describe experimental evidence.

The here postulated mechanism explaining keratoconus-induced deformation of the cornea is simple:
some corneal regeneration mechanisms fail to be activated, or some degeneration process starts, and it
is maximum in a point and then has decreasing effects with the distance from such a point.

This possible explanation of the mechanical effects of keratoconus needs to be substantiated by
detailed clinical and biological investigations: to our knowledge, no clear evidence is available to support
it yet. The theoretical predictions formulated here may help in assessing it.

Notably, in the following numerical simulations, a field v, measuring damage, has been introduced,
and thus, the elastic moduli (Y}, Y2, Y3, 112, 1413, f23) have been multiplied by (1 — ) to take into account
for the effect of such damage (see Figure 16). The shape of the damage has been chosen as a Gaussian
function in order to quickly set the centre of the damage and its extension.

Figure 17 exhibits the equilibrium shape, with C; =0, and a physiological uniform pressure, together
with the two main cuts, transverse and sagittal, with the damage of Figure 16. Here, the damage peak
is placed horizontally in correspondence with the fibres that, in the same direction, give more stiffness
to the cornea. Therefore, the effect of such damage is more recognisable in the transverse plane, with
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Figure 17. Case I: Equilibrium shape of a cornea affected by keratoconus with a broad, non-uniform assumed damage: (a) perspective
view, (b) transverse cut, (c) thickness in the transverse plane, (d) sagittal cut.
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Figure 18. Case 2: Equilibrium shape of a cornea affected by keratoconus with a localised, non-uniform assumed damage: (a)
perspective view, (b) transverse cut, (c) thickness in the transverse plane, (d) sagittal cut.

a thickness reduction at the maximum damage point in conjunction with a pronounced swelling in the
same location (see Figure 17(c)).

In a second case, we halve the spatial extension of the damage while maintaining the same centre
placement and amplitude to observe how the damage will localise its effects based on its location. These
effects are clearly detected from the plots in Figure 18, where the perspective view of the middle surface
of the cornea is displayed, together with the corneal sections in the transverse and sagittal planes, and
the above-mentioned localisation of the thickness decrease.
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Figure 20. Case 3: Equilibrium shape of a cornea affected by keratoconus with non-uniform assumed damage in the soft region: (a)
perspective view, (b) transverse cut, (c) thickness in the transverse and sagittal planes, (d) sagittal cut.

Afterwards, a third case is examined, changing the centre of the damage. In this scenario, we assume
that the centre of the damage affects the less stiff region far from the fibre-reinforced two central bands
(see Figure 19).

Figure 20 presents the outcomes of the new case, commencing from the overall middle surface of
the cornea, which exhibits a bulge where the damage peak is situated. Figure 20(b)—(d) displays the trans-
verse and sagittal sections of the cornea and the thickness in the corresponding planes, respectively. In
these pictures, the thickness does not reduce excessively since the fibre-reinforced central bands still
have their beneficial effect. Clearly, the thickness decreases the most in the damaged region, making the
shape of the cornea less symmetrical.

Considering C; # 0, a further case is examined to analyse the effect of stiffness variability across the
cornea thickness. Here, the pattern of the engineering constants used to evaluate C; is the same as for
Cy but with a reduction factor scale of 1/8. Regarding the other settings, they are the same as in case 1.
However, due to the more sensitive dependence on the damage, the amplitude of the damage is reduced a
little to have a damage peak of 0.985. This will prevent the simulation from having numerical issues due



20 Mathematics and Mechanics of Solids 00(0)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0|

~Lex -1 -0.5 [ 0.5 1
-0.5 0 0.5

(a) (b)

0.085 0.75
0.08 0.7
0.075 0.6|
0.07 03
0.065 0.45)
0.06, 0.35)
0.055 0.35
0.05 0.2
0.045 0.1
0.04
0.035 -0.05

thickness

AN
o
5}
o
o
0
=

(© E | (d)

Figure 21. Equilibrium shape of a cornea affected by keratoconus with non-uniform assumed damage and mechanical proper-
ties varying in the transverse direction (C| #0): (a) perspective view, (b) transverse cut, (c) thickness in the transverse plane,
(d) sagittal cut.

to the undesired approach to some singularities in the stiffness tensor. Overall, the behaviour is similar to
case 1, as shown in Figures 21(a), (b), and (d) that provide the complete shape and the main cuts of the
cornea. Nevertheless, the difference in thickness is evident (see Figure 21(c)), and we can clearly observe
a more pronounced reduction here than in the previous case 1 due to the degeneration process.

In this section, we show how the presented model, eventually modified to improve its predictivity,
may be used to test the validity of the assumed etiological mechanism for the onset of keratoconus: i.e.,
a degeneration of corneal tissue which is centred in a specific part of its tissue.

It is, however, our opinion that such a hypothesis is unlikely to be verified by further experimental
and theoretical analyses because it is tough to explain why the degenerative process is always localised
in a specific corneal part while assuming an influence on considered phenomena due to multiple factors,
among them also related to external forces (such as eyelid stress), could allow for an easy prediction of
many aspects of the observed phenomenology.

6. Effects on deformed shapes of eyelids mechanical action, weight,
and uniform damage

Another postulated cause of the lower bulging of keratoconus corneas is related to eyelid mechanical
effects. Blinking and eyelid pressure during normal eye movement may offer some shaping force to the
superior cornea, as the upper eyelid covers more of the superior cornea, exerting an estimated pres-
sure ranging between 10 and 80 mmHg [51,52], possibly stabilising it but exerting a vertical force on the
cornea, whereas the lower cornea is more exposed and less supported, making it more susceptible to
deformation.

Therefore, in this section, always assuming the presence of fixed externally applied eye pressure (equal
to 0.012 normalised by 0.2 MPa), we postulate a decrease in corneal stiffness parameters, the applica-
tion of a vertical force per unit area (set to 0.02166 normalised by 0.2 MPa) due to eyelid mechanical
action on the superior cornea (see Figure 22), and the term modelling gravitational dead loads of both the
cornea and aqueous humour in the external work functional. The dimensionless specific weight of aque-
ous humour is set to 6.4084 x 10~4 X2 /Ly and is applied only in the inferior part of the cornea. It depends

on the variable X2 since the height of the liquid column can be roughly approximated as equal to 2X2,
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Figure 22. Application area of mechanical eyelid action.

thinking of the cornea as a sphere-like shell. Here, we assumed the mass density of the aqueous humour
equal to 1005 kg/m3.

This analysis should be in agreement with the observation that keratoconus induces bulge deforma-
tions only in the lower part of the corneas.

Moreover, it may seem more logically economic to assume that the corneal regeneration failure or
degeneration process is uniform and that the observed corneal bulging in keratoconus is driven by weight:
however, as these actions may concentrate more fluids on the inferior cornea, the postulation that the
inferior cornea may be more damaged in keratoconus is not entirely unfounded.”

Of course, our modelling postulate here is based on a drastic simplification: We study only elastic
deformations of the considered 2D generalised continuum. We refrain, preliminarily, from investigating
the complex damage pathological progression phenomena and the correspondingly induced plastic and
permanent corneal deformation. We assume that the growth and regeneration phenomena (to be modelled
in the future, by means of the methods presented, e.g., in the works by Grillo and Di Stefano [9, 10] also on
the considerations given by Tepedino [11]) will shape permanently the cornea in a way which is “driven”
by the elastic solutions which we have found in the present paper.

A first scenario is faced in this section simply considering uniform damage affecting the elastic mod-
ulus Y3 set equal to 0.00169 (normalised by 0.2 MPa), considering the other elastic and shear moduli
constant and equal to the minimum value of the healthy case. In this way, we assume that the degenera-
tion process occurring in keratoconus weakens the two cross bands characteristic of the cornea structure,
which loses greater stiffness as the orientation of the collagen fibres ceases to be aligned in the two main
directions of orthotropy. In addition, we set C; =0 and fully clamped boundary conditions (¥ =0 and
d=N). As it can be seen from Figure 23, the overall equilibrium shape is different from the previously
considered cases. Here, we observe a thinning in the inferior part with a lack of symmetry and a certain
level of bulging of the corneal structure, driven by the external load acting towards the vertical direction.
Figure 23(b)—(d) shows the main sections along transverse and sagittal planes as well as the thickness in
the same planes, respectively.

The same test is performed, solely changing the boundary conditions from fully clamped to simply
supported, allowing the vector field d to rotate freely at the boundary. Figure 24 shows the new results.
Compared to the previous case, these numerical calculations exhibit differences, which are clearly near
the boundary, highlighting the notable importance of accurately modelling the boundary conditions.

Afterwards, the same simulation with C; # 0 again with the clamped boundary conditions, as per-
formed in the previous section, is conducted here to test the effect of stiffness variability across the
thickness of the cornea. Overall, the qualitative behaviour, as depicted in Figure 25, exhibits a mildly
different pattern, characterised by a slightly reduced thickness in comparison with the preceding example.

The presented simulations allow us to conclude that (1) inhomogeneous damage depending on (X I X2)
does not seem an effective and logically reasonable explanation of the onset of keratoconus (2) homoge-

neous (Xl , X2) damage together with vertical loads effects seem a more economical thought explanation
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Figure 23. Equilibrium shape of a cornea affected by keratoconus with uniform damage, under the effect of weight, and C| =0, case

of clamped BC: (a) perspective view, (b) transverse cut, (c) thickness in the transverse and sagittal planes, (d) sagittal cut.
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Figure 24. Equilibrium shape of a cornea affected by keratoconus with uniform damage, under the effect of weight, and C| =0, case

of simply supported BC: (a) perspective view, (b) transverse cut, (c) thickness in the transverse and sagittal planes, (d) sagittal cut.

for the keratoconus corneal shape (3) albeit histological evidence shows that in keratoconus corneas the
damage may depend on X3 the postulate linear dependence on X3 of the stiffness tensor does not affect
too much keratoconus cornea shape: this means that more realistic X3 dependences must be determined.

Moreover, the results presented in this section show thatitis really necessary to improve our modelling
procedure to include damage onset and growth so that the whole degenerative process, driven by the
considered vertical loads, can be fully described.
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Figure 25. Equilibrium shape of a cornea affected by keratoconus with uniform damage, under the effect of weight, and with C| #0,
case of clamped BC: (a) perspective view, (b) transverse cut, (c) thickness in the transverse and sagittal planes, (d) sagittal cut.
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7. Towards the mechanics of corneas after penetrating keratoplasty

Perusing [53], one can get an idea of the clinical importance of the considered problem. In the United
States, the number of penetrating keratoplasty surgeries in the last decade has been about 30,000
operations per year.

As described in the work by Gurnani and Kaur [54], the penetrating keratoplasty (see Figure 26)
consists of the replacement of the whole central corneal tissue with a donor’s one. A suture will favour
the formation of a cicatrix between the donor’s and host’s tissues.

7.1.  The mechanical model for transplanted corneas using penetrating keratoplasty

The continuum model, which we introduce in this section, is characterised as follows:
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Figure 27. The transplanted cornea shape after a rather successful penetrating keratoplasty.

e  The central corneal tissue is modelled as the “standard” material describing the mechanics of
corneas.

e  The peripheral region of the residual host corneal tissue is modelled as a “weaker” material, having
the same material symmetry as the healthy corneas.

° The region of the suture, which becomes a cicatricial tissue, is modelled as a material with linearly
variable moduli between the two previously mentioned ones (which, however, has the same material
symmetries as the corneal tissue).

e  The subjacent 3D continuum, which is used to obtain the reduced-order 2D generalised continuum
after our micro-macro identification procedure, will be, therefore, assumed to be characterised by
three different elasticity fourth-order tensors. In fact, we will assume that its constitutive equations
include only geometric nonlinearities, being the elastic deformation energy a quadratic function of
the finite deformation measures.

It has to be remarked that because of the known complex multi-scale microstructure of corneal tissue
and also because of the presence of high gradients in material properties, in future developments, it could
be beneficial to introduce second- or higher gradient 3D continuum models, as those studied numerically
and mathematically in Laudato et al. [41], Eremeyev et al. [43], Abali et al. [55], Eremeyev and Altenbach
[56], Abali [57], Abali et al. [58] and in Auffray et al. [18], Eremeyev et al. [59], Eremeyev [60], Eremeyev
and Lazar [61], Dell’Isola et al. [62], Abdoul-Anziz and Seppecher [63] from the viewpoint of theoretical
mechanics.

7.2. Commented results of numerical simulations

Experimental evidence shows that two possible outputs are occurring after penetrative keratoplasty. If the
host corneal tissue is strong enough, we have the formation of a reasonably “regular” corneal shape, with
the transplanted cornea having a nearly constant thickness (see Figure 27). Remark that the thinner part
of the original keratoconus tissue has a thickness of 220 um, and the residual astigmatism and hyperopia,
albeit being more than 19 and 6 diopters, respectively, can be corrected with standard eyeglasses.

Instead, when parts of the host corneal tissue are so weak and thin that it cannot “maintain” a reg-
ular shape of the transplanted corneal tissue (see Figure 33), then the optical correction may become
impossible even with scleral lenses.

It is, therefore, imperative to be able to predict the final shape of a transplanted cornea and it is clear
that the study of the mechanical aspects of the related phenomena is essential.

Using our very simplified model, we show the predicted shapes of transplanted corneas in the case of
very weak or sufficiently strong host corneal tissue.

7.2.1. The case of sufficiently strong host corneal tissue. To simulate the case of a transplanted cornea with a rather
successful penetrating keratoplasty, we alter the dimensionless engineering constants, as described
above, in the way which is represented by Figure 28, where the differences with the values used in the
previous section are made precise.
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Figure 28. Modified dimensionless engineering constants: (a) elastic modulus Y|, (b) elastic modulus Y, (c) elastic modulus Y3, (d)
Poisson ratio v3, (e) Poisson ratio v|3, (f) Poisson ratio 143, (g) shear modulus ¢, (h) shear modulus 143, (i) shear modulus z73.

Figure 29 shows the results of a numerical simulation with simply supported boundary conditions.
We observe a localised slight decrease of the thickness of the cornea close to the cicatrices: however, this
decrease is not “critical” as it is out of the center of the eye “optical” system and does not reach “rupture”
values.®

To check the predictive ability of the proposed model, we compare the numerical simulations with
the photos of a real transplanted cornea (see Figure 30). We have shown, with the blue and green lines,
respectively, the internal and external surfaces of the predicted shape of the cornea, superimposed to the
photo obtained with standard optical instruments: overall, the agreement seems acceptable. There are
some discrepancies near the cicatrices, but overall, the trend is very good: the “true” cornea appears to
be “thinner” there.

It has to be understood if this last fact is related to a thinner keratoconus cornea before transplant: in
fact, these thin parts indeed belong to the original tissue suffering keratoconus and its thickness could
have been reduced by the corresponding degeneration.

However, the initial findings suggest potential for improvement, and the results are promising,
indicating that our investigations must be continued.

7.2.2. The case of a weak host corneal tissue. We also considered the case when the Young modulus Y3 becomes
very weak (in the simulation, we set a decreasing factor of 0.1) as well as an increase in the inner pressure
of 50%. The corresponding results are shown in Figure 31. The boundary conditions for d are adjusted to
match the varying thickness of the cornea, which is smaller on the top and increases towards the bottom.
Specifically, we use a linear trend, with the reference value at the bottom and 1/4 at the top. We predict
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Figure 29. Case of sufficiently strong host corneal tissue: transplanted cornea shape: (a) perspective view, (b) transverse cut, (c)
thickness in the transverse and sagittal planes, (d) sagittal cut.

Figure 30. Case of sufficiently strong host corneal tissue: transplanted cornea shape (cut in the sagittal plane) comparison between
numerical simulations and experimental evidence.

that the thickness of the corneal tissue significantly decreases: however, we observe that the localisation
visible in the real scenario shown in Figure 32 is too challenging to be obtained with the model setting
adopted here. In fact, the results seem to predict some qualitative aspects of the actual case, as shown, but
the presented model needs substantial modification to better correspond with experimental evidence. We
believe that the discrepancies between the predicted shapes and observed ones are related to the cylindri-
cal symmetry hypothesis, which is clearly not entirely realistic when considering keratoconus corneas.
A more predictive model will need to introduce measured extra-geometric properties of the considered
system. In future investigations, we could also possibly assume that the initial thickness of the cornea
before the surgery was already reduced. After the removal of the sick corneal tissue, the transplanted one
is attached to an initially thinner layer in the corneal peripheral region. We also conjecture that the optimal
fit will be achieved only by introducing second gradient continua, as clinical experience highlights the
significant importance of observed boundary layers in the final equilibrium shapes of keratoconus and
transplanted corneas. Indeed, the dimensions of these layers can be modelled by introducing appropriate
characteristic lengths that can be clinically observed [42,64,65].
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Figure 31. Case of transplanted cornea with weak Y3: (a) perspective view, (b) transverse cut, (c) thickness in the transverse and
sagittal planes, (d) sagittal cut.

Figure 32. Case of a weak host corneal tissue: transplanted cornea shape (cut in the sagittal plane) comparison between numerical
simulations and experimental evidence.

We also conjecture that the optimal fit will be achieved by incorporating higher gradient continua, as
clinical experience highlights the significant importance of observed boundary layers in the final equi-
librium shapes of keratoconus and transplanted corneas. Indeed, the dimensions of these layers can be
modelled by introducing appropriate characteristic lengths that can be clinically observed.

It has to be underlined here explicitly that the issue of corneal thickness is of very relevant clinical
importance. When the elastic moduli of the host corneal tissue are weak and result in a cornea that is too
thin (say less than one-third of the physiological cornea), then one must expect very low optical qualities
of the transplanted cornea. In fact, in humans, the refractive power of the cornea is approximately 43
diopters: if one considers that the cornea has a thickness of 520 um one can conclude that 10 pm has an
optical power of more than 0.82 diopters. In other words, minimal changes in shape may have an enor-
mous optical effect. Consequently, the importance of the mechanical properties of transplanted corneas
cannot be neglected.

8. Conclusion and research perspectives

In keratoconus, the bulge or cone-shaped protrusion of the cornea most commonly occurs inferiorly (in
the lower part). The exact reason for this localisation is not fully understood: several theories and con-
tributing factors may explain why this pattern tends to occur. We believe that a multifactorial explanation
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Figure 33. Transplanted cornea on weaker corneal tissue.

will be needed, and the present paper intends to contribute to such an explanation [66]. Indeed, there
are anatomical and structural differences between the inferior and superior cornea [67], the first being
mechanically weaker than the second one: there is experimental evidence that the collagen lamellae in
the superior cornea are more tightly packed compared to the inferior cornea. Another factor may be
the mechanical action of eyelids, which may be coupled with environmental and behavioural factors
[68,69]. In fact, eye rubbing, especially in patients with allergies (very common in keratoconus), tends
to be directed more toward the inferior cornea. This chronic mechanical stress can weaken that area
further over time. Finally, it has been observed that genetic and biochemical factors may render the
inferior cornea more prone to damage. Indeed, localised enzymatic imbalances (like increased MMPs
and decreased protective enzymes) may have a more pronounced effect in areas that are already struc-
turally weaker, and keratoconus is associated with oxidative stress and inflammatory markers, which
may concentrate in mechanically stressed areas like the inferior cornea: all described factors are impor-
tant potential factors of damage localised in the inferior cornea. In short, the inferior location of the cone
in the keratoconus is likely due to a combination of anatomical weakness, mechanical exposure, and
behavioural influences, all acting more on the lower part of the cornea.

In the present paper, a significant simplification has been accepted: no explicit plasticity or damage
growth phenomena have been included, and no explicit models for the corneal tissue growth phenom-
ena have been introduced. These simplifications have to be removed by using the techniques and results
presented in the literature, e.g., by Grillo et al. [9,10]. We (simply and simplistically) assumed that the
metabolically driven remodelling and growth phenomena occurring in human corneas follow the way
which is indicated to them by the statical-equilibrium configurations calculated by using, albeit only geo-
metrically non-linear, an elastic model.? In a more detailed model, one needs to describe (1) the process
of growth of corneal tissues; (2) the process of metabolically induced mechanical damage of corneas
affected by keratoconus; (3) the visco-elastic properties (using, e.g., the models presented in the works
by Giorgio [70] and Cuomo et al. [71]) of corneas, at every stage of their degeneration; (4) all the relevant
coupling among the previous phenomena.

When, instead, the complex system, which one wants to consider, is constituted by a transplanted
central tissue, the tissue of the original cornea, which remains around the transplanted tissue and the
cicatrix formed between them (see Figure 33) then the modelling challenges are even more formidable.
The reader can see that, for the cornea considered in Figure 33, the residual original corneal tissue has a
thickness of only 130 um, while the transplanted tissue is much thicker and is closer to the physiological
one: in fact, standard corneal thickness varies between 420 and 625 um and the average thickness is
515 um in the centre of the cornea. It has to be remarked that after transplant, the typical “drop-like” or
“conical” shape of corneas affected by keratoconus is no longer present. We observe a weaker, nearly
circular crown constituted by the original, weaker, and thinner tissue (i.e., the thinner part of the cornea
represented in the photo 33). Itis connected by means of a cicatrix (the internal white parts in the photo) to
the transplanted part of the cornea (the internal dark part in the photo). In the present paper, we model the
transplanted cornea (with penetrating keratoplasty) as follows: the subjacent 3D continuum used to obtain
the reduced-order 2D generalised continuum modelling transplanted corneas has three different elasticity
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fourth-order tensors. The one used to model the original tissue (i.e., the tissue affected by keratoconus)
will be weaker, the tissue forming the cicatrix will be modelled with stiffer moduli, the central cornea
(i.e., the tissue coming from the donor) will be considered to be constituted by a “standard” tissue.

In addition, we assume that the considered corneas have a non-stressed plane elliptic configuration and
that the internal ocular pressure deforms the cornea, placing it in the actual configuration. This assump-
tion simplifies our treatment: some undue and inappropriate simplifications may have been introduced
because of it. In fact, the cornea, most likely, is not plane in its non-stressed configuration; therefore,
to be more precise, when introducing its reference stress free-configuration in the 3D modelling, one
has to consider a region, which is the union of segments of variable thickness, whose central points
belong to an ellipsoid surface. As a consequence, the reduced order model should be what is called a
“generalised shell” [13,14,72]. However, only after having proven in this paper that our approach gives
well-grounded qualitative results, in future investigations, one is justified to relax these assumptions, also
by using the methods presented in the works by Altenbach and Eremeyev [73], Altenbach et al. [74]. Of
course, we are aware that in some modelling circumstances relevant to corneal mechanics, other external
loads can be considered as line forces and point forces. As large deformations are unavoidable in the con-
sidered corneal mechanical equilibrium, then the analysis of the properties of third gradient continua,
as performed by R. Fedele, seems necessary [64,65,75,76].

This paper considers two possible damage effects of keratoconus pathology on corneal shapes. Their
plausibility needs to be checked with further clinical evidence: is the cone-like shape of keratoconus
corneas caused by uniform damage of corneal tissue, and is its lower localisation related to gravitational
forces and eyelid contact actions? or is it due to concentrated damage decreasing from a specific corneal
localisation? We believe we have understood that the first possibility is more likely.

There are many research perspectives that are opened by the promising results presented in this paper.
We limit ourselves to list those which seem to be the most immediate ones:

e A careful nondimensionalisation of a complete continuum higher gradient model seems necessary
to investigate the possible performances of the continuum models by extensive parametric analy-
sis and to identify the critical values of the biomechanical constitutive parameters introduced. The
methods to be used are those presented in the works by De Angelo et al. [77] and Vazic et al. [78].

e  Asecond or higher gradient 3D model seems necessary to describe the micro-behaviour of corneas,
especially when the degenerative process induced by keratoconus causes locally high hetero-
geneities in constitutive parameters and regions where high gradients of displacement or plastic
deformations [79-85] are concentrated. Indeed, the presence and onset of boundary layers within
the deformed configurations of the studied continua, coupled with the remarkable heterogeneity
of the material parameters inherent in keratoconus corneas, serve as well-established indica-
tors [86—88] of the necessity for second gradient continuum models in the analysis of the specified
mechanical system. Possibly even higher gradient models [64,75,76] may be necessary: a deeper
theoretical investigation of these aspects may be required in determining the simplest generalised
continuum model which is predictive enough to supply the demanded guidance to the understand-
ing of considered phenomenology. The considered problem of keratoconus formation could also
be viewed as a loss of stability under internal pressure, see the work by Eremeyev et al. [89].

e A numerical micro-macro identification is needed in order to base the continuum approach pre-
sented here on the discrete one presented in the papers [22-25] where the corneal fibres are modelled
by means of a system of interconnected beams. The suggestive results presented there are qualita-
tively reproduced here; however, a quantitative micro-macro identification is demanded in order to
connect more precisely the constitutive assumptions on the stiffness tensor C to the known proper-
ties of the corneal micro-structure. It has to be remarked that the statistical methods used, e.g., in
the works by Soize [90] and La Valle et al. [91], will be necessary to attain such a result.

e  An asymptotic expansion method seems, then, necessary to get an analytical micro-macro model
identification and possibly lead to a rigorous homogenisation result. For the derivation of the highly
deformable shells models, various techniques of the 3D-to-2D reduction are indeed possible Ere-
meyev et al. [15], Altenbach and Eremeyev [72] or Miihlich et al. [92], Mandadapu et al. [93]. In
particular, the through-the-thickness integration procedure was successfully applied for derivation
of thermo- and thermoviscoelastic shells, as well as shells with diffusion and phase transformations
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[59,94-96]. For the methods needed to carefully determine the macro-constitutive parameters, we
refer to the works by Abali and Barchiesi [97] and Vazic et al. [78] for homogenisation by using
asymptotic analysis in mechanics and in thermomechanics Vazic et al. [98]. This analysis is also
verified and applied in the works by Yang et al. [99] and Aydin et al. [100]. A comparison of different
homogenisation techniques can be found in the work by Sarar et al. [101].

A class of richer 2D reduced order models could be necessary to capture all relevant deformative
and damage phenomena occurring in the pathogenic processes leading to keratoconus. We expect
that together with the extra kinematical descriptor d some others may be required in order to usefully
replace 3D with reduced order 2D models [96,102-107]. Such a model reduction, on the other hand,
may be necessary if one has to confront a massive amount of simulations, either to explore the
predictive possibilities of the model or to support and optimise the medical acts (as, e.g., transplants
or surgical corneal shape corrections) aiming to the care of corneal pathologies.

In the present paper, the 2D model is assumed to have as reference configuration a planar one. Albeit
this assumption greatly simplifies the mathematical treatment, it may be considered simply as a first
simplification that does not have a well-grounded physiological basis. Therefore, the generalised 2D
plate theory used in the present paper needs to be refined by introducing a 2D generalised shell
theory. With second gradient models, it is possible to compute [108] the shapes of generalised shells,
overcoming some serious numerical challenges [79,109]. Therefore, we expect that reduced order
models may also be used ( see De Angelo et al. [77]) to describe our phenomenology.

In the present work, the analysis is based on essential boundary conditions only. In other words,
we assume that the cornea is “clamped” or that corneal tissue can rotate with respect to the rest
of the bulbus oculi ( i.e., the part of the sclera where the cornea is attached). We are aware of the
fact that it is necessary to have more detailed modelling of the mechanical interactions between the
cornea and the other structural elements of the ocular globe: this will be made possible by eventually
introducing suitable and more complex natural or mixed boundary conditions.

We conjecture that it will be possible to estimate the layered structure of the corneal tissue by
studying and measuring the properties of waves propagating inside it (e.g., by using the methods
presented in Eugster [46], Yildizdag et al. [47]). In this context, it seems reasonable that the corneal
micro-structure may “trap” some of the kinetic energy of the “testing wave.” Therefore, the methods
presented in Abali et al. [58], Placidi et al. [110], Bersani et al. [111] may be helpful.

Treatments for corneal issues depend on the type and severity of the condition. Among some
common treatments, we can recall: medications with eye drops made by lubricating, steroid, and
antibiotic drops commonly used to treat corneal infections (keratitis) or inflammations; laser treat-
ment, namely, phototherapeutic keratectomy (PTK); corneal transplantation; stem cell therapy, for
some severe injuries or degenerative diseases, stem cell transplants from the limbal region of the eye
(the border between the cornea and sclera) can help regenerate damaged corneal tissue. Some ideas
about how to model these treatments can be found in the work by Osorio-Blanco et al. [112], where
enriched particles are studied, or in the work by Zhang et al. [113], where hydrogel is employed.
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Notes

1.

The socioeconomic impact of keratoconus should not be underestimated. In the work by Wagner et al. [114], it has been
estimated that patients affected by keratoconus are expected to spend more than 25,000 $ in their post-diagnosis lifetime
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if no transplant is necessary. In fact, the cost-benefit analysis performed by the Lewin Group for Eye Bank Association
of America in 2013 estimated the cost of about 17,000 $ for each corneal transplant.

It seems that, in order to be able to “measure” the shape of keratoconus or transplanted corneas, some non-standard
techniques need to be developed. This is a problem related to the other issue concerning the experimental “identification”
and determination [115-119] of the mathematical models and the mechanical parameters most suitable for predicting the
behaviour of mechanical systems. It has to be remarked that it seems necessary to develop the available techniques to face
the problem of (1) identifying the mechanical properties of corneal tissues (as done, e.g., in Valmalle et al. [120, 121],
Maier et al. [122], Fedele et al. [123]), and (2) being able to reconstruct the highly irregular shapes of keratoconus and
transplanted corneas. In this context, it seems that the works by Hild and Roux give suitable conceptual and technical tools
[115,118,124-126].

The presence of high gradients of deformation, stress, and material properties proven experimentally to be present in
keratoconus and transplanted corneas will demand the introduction of high- gradient continua of the kind studied by Paul
Germain [127] and developed in the literature [55,64,65,108,128-131]. It is to be noticed that the specific geometry of
corneas and their mechanical interconnection with the sclera may indicate that third-gradient continua may be needed for
successful modelling [75,76].

In this context the results presented in Olive and Auffray [132] are beneficial to characterise the constitutive equations of
the material constituting corneas.

We acknowledge explicitly here the enlightening discussions with Proff. Vasta and Gizzi, who allowed us to formulate the
just mentioned assumption. We believe that it has to be carefully investigated the relationship between their model, based
on corneal truss “micro-architecture” and the continuum model that we present here. In this context, the methods and
the results presented in the works by Alibert et al. [128] and Lubarda and Chen [21], Yildizdag et al. [47, 133], Spagnuolo
et al. [134], Erden Yildizdag et al. [135] can be extremely useful.

For higher gradient generalised continua non-standard natural boundary conditions arise and must be determined via a
process of integration by parts, as shown in the work by Germain [127] and, for third gradient continua, in the works by
Fedele [75, 76].

Indeed, keratoconus is associated with an imbalance in matrix metalloproteinases (MMPs) and their inhibitors, resulting
in localised stromal degradation. These biochemical changes may preferentially affect structurally weaker regions like the
inferior cornea (Elsheikh et al. [48]).

It has to be remarked that the damage and rupture phenomena in transplanted and keratoconus corneas have not been
completely understood, both from the biological and the mechanical viewpoints. We feel a particular need to develop
mechanical models for the damage and plasticity occurring in corneal tissues by taking into account their “fibrous”
microstructure (for relevant models already available in the literature, see, e.g., Spagnuolo et al. [119], Valmalle et al.
[121], Maier et al. [122], Valoroso and Fedele [136], Ponomarev [137]).

The first author, affected by keratoconus and whose corneas were transplanted with a penetrative keratoplasty (see the
previous Figures 6 and 7, which refer to his corneas), believe to see slight differences in his visual acuity if he changes the
angle between his corneal sagittal direction and the weight direction. This may be related to the fact that, in weak corneas,
the elastic deformations induced by the vertical mechanical actions may change the corneal optical properties. Of course,
such an observation may have many different explanations and deserves to be substantiated by careful theoretical analysis
and precise measurements. While T. Henze will find a practical way to perform such measurements, we suspend our
judgment.
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